

IDAHO ANADROMOUS EMIGRANT MONITORING

2022 ANNUAL REPORT

Photo: Amber Young, IDFG

Prepared by:

Amber N. Young, Fisheries Biologist Bruce Barnett, Fisheries Data Coordinator Micah Davison, Supervisory Fisheries Biologist Marika E. Dobos, Anadromous Staff Biologist Megan Heller, Fisheries Biologist Brian A. Knoth, Fisheries Biologist Stacey F. Meyer, Fisheries Biologist Ronald V. Roberts, Fisheries Technician II Nolan Smith, Fisheries Biologist

> IDFG Report Number 23-11 May 2023

IDAHO ANADROMOUS EMIGRANT MONITORING

2022 Annual Report

By Amber N. Young Bruce Barnett Micah Davison Marika E. Dobos Megan Heller Brian A. Knoth Stacey F. Meyer Ronald V. Roberts Nolan Smith

Idaho Department of Fish and Game 600 South Walnut Street P.O. Box 25 Boise, ID 83712

> IDFG Report Number 23-11 May 2023

TABLE OF CONTENTS

<u>Page</u>

ABBREVIATIONS AND ACRONYMS	
CHAPTER 1	.3
ANADROMOUS EMIGRANT MONITORING IN IDAHO USING ROTARY SCREW TRAPS	3
ABSTRACT	
INTRODUCTION	.4
STUDY AREA	5
METHODS	.6
Rotary Screw Trap Operations and Sampling Process	
Chinook Salmon Cohort Abundance and Productivity	
Abundance at RSTs	
Survival and Abundance at LGR	
Productivity	9
Steelhead Emigrant Abundance and Productivity	
Abundance at RSTs	
Productivity	
RESULTS	
Rotary Screw Trap Operations	11
Annual Chinook Salmon Emigrant Abundance at RSTs Cohort Chinook Salmon Emigrant Abundance at RSTs	11
Chinook Salmon Emigrant Abundance at KSTS	
Steelhead Emigrant Abundance and Productivity	
Pacific Lamprey Catch	
DISCUSSION	13
RECOMMENDATIONS	14
ACKNOWLEDGEMENTS	16
CHAPTER 2	17
ESTIMATING SURVIVAL AND ABUNDANCE OF WILD STEELHEAD SMOLTS TO	
LOWER GRANITE DAM	17
ABSTRACT	17
INTRODUCTION	18
METHODS	18
Cohort abundance at RST	
Estimating Survival to LGR	
Program and Uploading Files	
Model and Output	
RESULTS	
Cohort Steelhead Emigrant Movement Patterns	
Steelhead Survival, Abundance, and Productivity	
DISCUSSION	
LITERATURE CITED	23

TABLES	
FIGURES	
APPENDICES	

LIST OF TABLES

Table 1.	Major population groups and independent populations within the spring- summer Chinook Salmon evolutionary significant unit (ESU) and Snake River steelhead distinct population segment (DPS; ICTRT 2003, 2005; NMFS 2011)
Table 2.	Trap catch and emigrant abundance estimates for juvenile Chinook Salmon by season and age from rotary screw traps (RST) operated in the Salmon River and Clearwater River basins, Idaho during calendar year 2022. Instances where no estimate was made are noted NA
Table 3.	Estimated abundance of emigrants at each rotary screw trap (RST), survival to Lower Granite Dam (LGR), and estimated smolt abundance at LGR for brood year 2020 wild juvenile Chinook Salmon from the Salmon River and Clearwater River basins, Idaho. Instances where no estimate was made are noted NA
Table 4.	Estimated adult-to-juvenile productivity of wild juvenile Chinook Salmon for brood year 2020, expressed as both emigrants at rotary screw trap per female spawner and smolts at Lower Granite Dam (LGR) per female spawner. Instances where no estimates were made are noted NE
Table 5.	Parameter estimates for wild Chinook Salmon Beverton-Holt stock recruit curves. "Recruits" are represented by smolts at Lower Granite Dam, and "stock" are wild redds above traps or female spawners above traps estimated using mark-recapture techniques. Alpha/beta is the estimated asymptote
Table 6.	Rotary screw trap catch and emigrant abundance estimates, with 95% confidence intervals (CI) for wild juvenile steelhead >80 mm FL, by season during 2022. Instances where no estimate was made are noted NE
Table 7.	Seasonal age composition estimates of juvenile steelhead >80 mm FL in 2022 from rotary screw traps (RST) operated in the Salmon River and Clearwater River basins, Idaho
Table 8.	Season and life stage of Pacific Lamprey captured in rotary screw traps (RST) operated in the Salmon River and Clearwater River basins, Idaho during calendar year 2022. Only RST that captured Pacific Lamprey are included

LIST OF FIGURES

Figure 1.	Location of rotary screw traps, weirs, and PIT arrays operated by IDFG in 2022 with reference to spring/summer Chinook Salmon population structure. Numbers correspond to infrastructure sites in the lower left inset. Chinook Salmon major population groups are highlighted and independent populations are delineated
Figure 2.	Location of rotary screw traps, weirs, and PIT arrays operated by IDFG in 2022 with reference to steelhead population structure. Numbers correspond to infrastructure sites in the lower left inset. Steelhead major population groups are highlighted and independent populations are delineated
Figure 3.	Relationship between wild Chinook Salmon smolts at Lower Granite Dam (LGR) and adult female spawner abundance (all redds above trap) for Chinook Salmon in Big Creek (Brood Years (BY) 2006-2020), and Lower Marsh Creek (BY 2009-2020) in the Middle Fork Salmon major population group (mpg). The Lemhi River (BY 1991-2020), Pahsimeroi and Upper Salmon river (BY 1992-2020) in the Upper Salmon River mpg
Figure 4.	Relationship between wild steelhead emigrant productivity (recruits per spawner expressed as emigrants above the trap/ female spawner above the trap or array) and adult female spawner abundance above the trap or array from Rapid River (Brood Years (BY) 2006-2018), Big Creek (BY 2010-2018), Upper Salmon River (BY 2001-2018), Pahsimeroi River (BY 2001-2018), and Lemhi River (BY 2010-2018). Trend lines fit with a power function are shown for each data set
Figure 5.	Relationship between wild juvenile steelhead productivity (recruits per spawner expressed as emigrants above the trap/ female spawner) and adult female spawner abundance above the trap or array for steelhead populations from Big Bear Creek (Brood Years (BY) 2005-2018), East Fork Potlatch River (BY 2008-2018), Crooked River (BY 2007-2016), Fish Creek (BY 1996-2018). Trend lines fit with a power function are shown for each data set
Figure 6.	Schematic of migratory pathway possibilities of an example wild juvenile steelhead brood year cohort. Juveniles are tagged and released at rotary screw traps leaving tributary watersheds at a range of ages. Possible pathways to Lower Granite Dam (LGR) include direct migration with no delay (solid lines), overwintering and migrating the following spring (short dashed lines), holding for two winters before ocean migration (long dashed lines), and holding for three winters prior to ocean migration (dotted lines). Total brood year smolt production is the sum of smolt groups that survive to LGR.
Figure 7.	Proportions of brood year cohorts of juvenile steelhead from Big Bear Creek (BY 2007–2020), the East Fork Potlatch River (BY 2007–2019), Fish Creek (BY 2005–2017), and Hayden Creek (BY 2007–2017) that smolted and survived to Lower Granite Dam, partitioned by movement pattern and by age tagged at four rotary screw trap sites
Figure 8.	Brood year cohort trends in estimated survival of juvenile steelhead with standard error bars to Lower Granite Dam by movement pattern and by

	age tagged at four rotary screw trap sites. Estimates span brood years 2007–2020 for Big Bear Creek, 2007–2019 for the East Fork Potlatch River, 2005–2019 for Fish Creek, and 2007–2019 for Hayden Creek	50
Figure 9.	Stacked bars of estimated total brood year cohort abundance of juvenile steelhead by age group at the rotary screw trap of the respective natal tributary watershed and subsequently at Lower Granite Dam. Estimates are presented for fish from Big Bear Creek, EF Potlatch River, Fish Creek, and Hauden Creek	54
	and Hayden Creek	51
Figure 10.	Overall brood year cohort survival of juvenile steelhead from Big Bear Creek, EF Potlatch River, Fish Creek, and Hayden Creek.	52
	,	-

LIST OF APPENDICES

Appendix A.	Rotary screw traps operated by Idaho Department of Fish and Game in 2022 to monitor Chinook Salmon and steelhead juvenile emigrants in Idaho. Major population group (MPG) and population for each species are identified. Funding projects include Idaho Salmon and Steelhead Monitoring and Evaluation Studies (ISSMES), and Intensively Monitored Watershed (IMW).	54
Appendix B.	Rotary screw trap operations in the Salmon River and Clearwater River basins, Idaho for 2022, with a brief summary of operations and logistical issues that possibly affected estimation of juvenile Chinook Salmon and steelhead emigrants	55
Appendix C.	Seasonal catch of juvenile steelhead <80 mm FL from rotary screw traps operated in streams in Idaho in 2022.	58
Appendix D.	Chinook Salmon abundance and productivity estimates by location and cohort	59
Appendix E.	Estimated productivity for juvenile steelhead emigrants by cohort, expressed as emigrants at rotary screw trap (RST) per female spawner, for populations with estimates of female spawner abundance in the Salmon River and Clearwater River basins, Idaho. Accounting is incomplete for cohorts with dashes in any age column.	63
Appendix F.	Steelhead abundance and productivity estimates by cohort at rotary screw traps and LGR for the Salmon River and Clearwater River drainages, Idaho	68
Appendix G.	Plan for operation of rotary screw traps by Idaho Department of Fish and Game (IDFG) in 2022.	70

ABBREVIATIONS AND ACRONYMS

Abbreviation	Definition
BY	Brood Year
CSS	Comparative Survival Study
DPS	Distinct Population Segment
ESA	Endangered Species Act
ESU	Evolutionarily Significant Unit
HGMP	Hatchery and Genetic Management Plans
ICTRT	Interior Columbia (River Basin) Technical Recovery Team
IDFG	Idaho Department of Fish and Game
IFWIS	Idaho Fish and Wildlife Information System
LGR	Lower Granite Dam
MPG	Major Population Group
PIT	Passive Integrated Transponder
RST	Rotary Screw Trap(s)
SMP	Smolt Monitoring Project

Suggested Citation: Young, A. N., B. Barnett, M. Davison, M. E. Dobos, M. Heller, B. A. Knoth, S. F. Meyer, R. V. Roberts, and N. Smith. 2022. Idaho anadromous emigrant monitoring, 2022 annual report. Idaho Department of Fish and Game Report 23-11, Boise.

CHAPTER 1

ANADROMOUS EMIGRANT MONITORING IN IDAHO USING ROTARY SCREW TRAPS

ABSTRACT

During 2022, Idaho Department of Fish and Game monitored emigration of wild juvenile Chinook Salmon Oncorhynchus tshawytscha and steelhead O. mykiss at ten rotary screw traps (RST) in the Salmon River basin and five in the Clearwater River basin. In the Salmon basin, with the exception of Rapid River where abundance could not be estimated, total estimated abundance of Chinook Salmon emigrants varied from 2,606 to 137,104 fish (n = 9). In the Clearwater River basin, abundance of Chinook Salmon emigrants could only be estimated for spring age-1 fish at the Crooked River RST (663 fish) and for spring age-1 and fall age-0 fish at the Lochsa River RST (4,530 fish). Abundance of juvenile steelhead emigrants were estimated for at least one trapping period for all RSTs that operated in 2022. Total abundance estimates of juvenile steelhead varied from 1,493 to 26,573 fish in the Salmon River basin and from 823 to 30,554 fish in the Clearwater River basin. Productivity of juvenile Chinook Salmon emigrants at RSTs and of smolts that survived to Lower Granite Dam (LGR) were estimated at all RSTs except the Rapid River site in the Salmon River basin and could not be estimated at any RST sites in the Clearwater River basin. Productivity of Chinook juveniles in the Salmon River basin at RSTs for brood year (BY) 2020 varied from 201 emigrants per female spawner in the Lemhi River to 1.736 emigrants per female spawner in Big Creek. Productivity of smolts from the Salmon River basin at LGR for BY2020 varied from 13 smolts per female spawner from Hayden Creek to 835 smolts per female spawner from Big Creek. Juvenile steelhead productivity for BY2017 at trapping sites in the Salmon River basin varied from 76 emigrants per female spawner in the lower Lemhi River to 554 emigrants per female spawner in the upper Lemhi River. Juvenile steelhead productivity for BY2017 in the Clearwater River basin varied from 138 emigrants per female spawner in Fish Creek to 959 emigrants per female spawner in East Fork Potlatch River. Productivity of juvenile steelhead from Crooked River could not be estimated for BY 2017. The pairing of adult and juvenile abundance data provided insight into the variation in habitat and stock characteristics for Chinook Salmon and steelhead populations throughout Idaho.

Authors:

Amber N. Young, Fisheries Biologist Bruce Barnett, Fisheries Data Coordinator Micah Davison, Supervisory Fisheries Biologist Marika E. Dobos, Anadromous Staff Biologist Megan Heller, Fisheries Biologist Brian A. Knoth, Fisheries Biologist Stacey F. Meyer, Fisheries Biologist Ronald V. Roberts, Fisheries Technician II Nolan Smith, Fisheries Biologist

INTRODUCTION

Chinook Salmon *Oncorhynchus tshawytscha* and steelhead *O. mykiss*, the anadromous form of Rainbow Trout, declined substantially in the Snake River basin following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating spring-summer Chinook Salmon (hereafter Chinook Salmon) and steelhead from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Adult Chinook Salmon and steelhead abundances over Lower Granite Dam (LGR) into the Snake River increased slightly in the early 1980s (Busby et al. 1996), declined in the 1990s, and noticeably increased again starting in 2000. As a result of critically low adult abundances in the 1990s, Snake River spring-summer Chinook Salmon were classified as threatened in 1992 and Snake River steelhead were classified as threatened under the Endangered Species Act (ESA) in 1997. Since 2015, abundance declined to levels similar to the mid-1990s.

Within the Snake River spring-summer Chinook Salmon evolutionarily significant unit (ESU), there are seven major population groups (MPGs): Lower Snake River, Grande Ronde and Imnaha rivers, South Fork Salmon River, Middle Fork Salmon River, Upper Salmon River, Dry Clearwater River, and the Wet Clearwater River (Table 1). The Dry Clearwater River and the Wet Clearwater River MPGs are considered to be extirpated but have been reestablished with stocks from other MPGs. The Panther Creek population in the Upper Salmon MPG was also extirpated and re-established. Currently there are 28 extant or re-established populations across all five Idaho MPGs.

Within the Snake River steelhead distinct population segment (DPS), there are six MPGs: Lower Snake River, Grande Ronde River, Imnaha River, Clearwater River, Salmon River, and Hells Canyon Tributaries (ICBTRT 2003, 2005; NMFS 2011). However, the Hells Canyon MPG is considered to be extirpated. A total of 24 extant demographically independent populations have been identified.

Anadromous fish management programs in the Snake River basin include large-scale hatchery programs (intended to mitigate for the impacts of hydroelectric dam construction and operation on fisheries in the basin) and recovery planning and implementation (aimed at recovering ESA-listed wild salmon and steelhead stocks). The Idaho Department of Fish and Game (IDFG) anadromous fish program's long-range goal, consistent with basin-wide mitigation and recovery programs, is to preserve Idaho's Chinook Salmon and steelhead runs and recover them to provide benefit to all users (IDFG 2019). Management to achieve these goals requires an understanding of how salmonid populations function as well as periodic status assessments (McElhany et al. 2000). Specific data necessary to achieve these goals on some Snake River steelhead and Chinook Salmon populations were lacking in the past, particularly key parameters such as abundance, age composition, genetic diversity, recruits per spawner, and survival rates (ICBTRT 2003).

Idaho Department of Fish and Game provides long-term continuous research, monitoring, and evaluation of the status of the state's populations of anadromous salmon and steelhead. Recommendations for monitoring to address population status assessments across the Columbia River basin include: 1) annual estimation of juvenile emigrant abundance across major populations, and 2) estimation of the adult-to-juvenile productivity of both tributary emigrants and smolts through the Columbia River basin hydrosystem (Crawford and Rumsey 2011), which provides insight into survival throughout the life cycle. These are two of several critical metrics necessary to assess overall trends in abundance and productivity.

Freshwater rearing of anadromous salmonids in Idaho is spatially extensive and emigration is protracted, especially for steelhead. Chinook Salmon and steelhead may rear from headwater spawning areas to the lower Snake River throughout the year, with spatial distribution of multiple cohorts often overlapping temporally. Cohorts of Chinook Salmon are relatively easy to distinguish, with a few exceptions (e.g., Pahsimeroi River, where a significant proportion of age-0 emigrants smolt; Copeland and Venditti 2009). Extensive ageing of steelhead emigrants is necessary to estimate population productivity because several cohorts emigrate together and overlap in size. Ideal locations to estimate abundance of juvenile emigrants at the population scale are downstream from most spawning and early-rearing habitat, yet upstream enough in the drainage to allow efficient population-specific sampling. If traps are located appropriately downstream of important spawning and rearing habitats, standardized sampling through time and across locations can allow long-term evaluations and comparisons of population trends. Rotary screw traps (hereafter RSTs) have been the primary tool used by IDFG since the early 1990s to address the following objectives for juvenile anadromous fishes: 1) estimation of emigrant abundance for select populations, and 2) implanting passive integrated transponder (PIT) tags in emigrants to evaluate hydrosystem passage (Venditti et al. 2015a; Copeland et al. 2015; Bowersox and Biggs 2012; Apperson et al. 2016, 2017; Uthe et al. 2017; McCann et al. 2015).

A collaborative effort across the Columbia River basin offered guidance to standardize monitoring of juvenile emigrants and to coordinate and prioritize monitoring work (i.e., Anadromous Monitorina http://www.nwcouncil.org/fw/am/ Salmonid Strategy, monitoring/monitoring-strategies). Since that collaborative process began, IDFG has continued some previous RST operations and strategically implemented new RST operations to contribute to the monitoring of the Major Population Groups (MPGs) and populations most important to overall recovery goals. Most monitoring restructuring was delayed until the completion of Idaho Supplementation Studies (Venditti et al. 2015b). However, monitoring in Marsh Creek downstream of the Beaver Creek confluence was implemented in 2010. The current monitoring configuration began in 2015. Our goal with this report is to consolidate all information generated by means of RSTs operated by IDFG to assess trends in abundance and productivity of juvenile Chinook Salmon and steelhead populations. Additionally, juvenile Pacific Lamprey Entosphenus tridentatus, a species of greatest conservation need in Idaho (IDFG 2017), are captured at some RSTs, providing us the opportunity to monitor both supplemented and non-supplemented lamprey populations.

We have four objectives for this report: 1) report estimates of emigrant abundance at RSTs by season and cohort for Chinook Salmon and steelhead, 2) estimate emigrant survival rate to Lower Granite Dam (LGR) by season and cohort for Chinook Salmon, 3) present current estimates of adult-to-juvenile freshwater productivity for Chinook Salmon using the Beverton-Holt stock-recruit relationship and for steelhead using brood tables (Beverton and Holt 1957), and 4) develop methods and a series of survival estimates to LGR for steelhead cohorts, thus allowing adult to smolt productivity for that species.

STUDY AREA

The Salmon River and Clearwater River basins include portions of the Idaho Batholith, the Middle Rockies, and the Northern Rockies ecoregions (McGrath et al. 2002; Kohler et al. 2013). Most study streams drain in areas with sterile granitic parent material associated with the Idaho Batholith, resulting in relatively low-nutrient systems (McGrath et al. 2002; Sanderson et al. 2009). Three exceptions are the Potlatch River in the Clearwater River basin and the Lemhi and

Pahsimeroi rivers in the Salmon River basin, all of which flow through predominately fertile basaltic geologies. In both the Clearwater and the Salmon river basins, water quality is good and substrates range from sand and small gravels to cobbles and large boulders. Winters are harsh and growing seasons are short (45-100 d). This area is also relatively dry with annual precipitation (primarily snowfall during spring, fall, and winter) ranging from 31 cm to 203 cm. Snowmelt influences most flow regimes with peak spring flows occurring during May and June and base flows occurring for the remainder of the year. Groundwater recharge heavily influences base flows in the Lemhi River and Pahsimeroi River. All waterbodies discussed in this report are inhabited by anadromous fishes.

Idaho Chinook Salmon and steelhead migrate long distances during their life cycle. They travel 1,451 km from the Pacific Ocean to the highest reaches of their spawning grounds in the Sawtooth National Recreation Area and climb from sea level to elevations over 2,000 m. Juvenile salmon and steelhead encounter eight dams, four along the Snake River and four along the Columbia River before they reach the ocean. The first dam Idaho Chinook Salmon and steelhead encounter during emigration is LGR on the Snake River, 695 km from the Pacific Ocean. In the Salmon River basin, juveniles migrate between 283 km and 747 km from their respective RST before encountering LGR. At Clearwater River basin RSTs, juveniles migrate between 98 km and 324 km before encountering LGR. Juvenile Chinook Salmon and steelhead rear in a variety of locations ranging from natal tributaries to downstream mainstem rivers (Dobos et al. 2020; Copeland et al. 2014).

Rotary screw traps operated by IDFG to sample wild juvenile Chinook Salmon and steelhead are distributed throughout the Salmon River and Clearwater River basins, Idaho (Figures 1 and 2). Rotary screw traps were located to sample emigration from selected populations for both species if present. Details about RSTs coverage are given in Appendix A.

METHODS

Rotary Screw Trap Operations and Sampling Process

Methods applied to operate RSTs, handle and tag fish, manage data, and estimate emigrant abundance and smolt survival were primarily adapted from Venditti et al. (2015a). Volkhardt et al. (2007) provides much detail regarding RST design/construction and recommendations regarding river placement and general trap operations in a wide range of stream sizes. Biologists with IDFG spent a great deal of time since the early 1990s refining all protocols associated with operating RSTs in Idaho rivers to ensure 1) consistent information was collected and archived, 2) fish were handled appropriately to minimize stress, and 3) personnel safety. These protocols were collated and formalized by Copeland et al. (2021).

We continuously strive to sample populations efficiently and minimize potential harm to individual fish. Tagging and information derived from sampling is coordinated with and used among multiple projects (e.g., Copeland et al. 2015; Venditti et al. 2015b; McCann et al. 2015; Uthe et al. 2017). Take associated with trapping ESA-listed species is permitted under a State of Idaho 4d research permit issued by NMFS. A detailed take report is submitted to NMFS at the end of each year, which also outlines the measures we take to minimize stress or harm to fish.

Rotary screw traps were operated throughout much of the year and operation was generally discontinued only when conditions jeopardize safety of personnel, fish, or the trap. While some low elevation RSTs are operated from late February into December, most traps are higher

in elevation and are operated from the middle of March into the middle of November. Rotary screw trap operations in some Clearwater River basin streams (Potlatch and Big Bear Creek) are routinely unable to operate past June, limited by low stream flow and high stream temperatures (>17°C). Additionally, RST operation in Hayden Creek can be limited due to irrigation withdrawals. Rotary screw traps are not operated in the winter due to icing and the lack of fish movement (Bjornn 1978). When flow conditions allow, traps were positioned in the thalweg (region of the stream that has most of the flow by volume) to maximize capture efficiency. Program personnel checked RSTs and processed fish at least once daily during daylight hours and more frequently when conditions were problematic. High water flows, debris, and ice can inhibit RST operations and render them inoperable for short periods of time (Appendix B). Juvenile hatchery fish releases can overwhelm RSTs and cause risk to fish health. During high flows and after hatchery fish were released upstream of RSTs, personnel checked the RSTs several times throughout the day and night, and occasionally moved RSTs out of the thalweg, or ceased trapping to avoid harm to fish and damage to the RST. Once conditions were improved and it was safe for personnel, normal trapping operations resumed.

Fish collected in RSTs were processed using standard protocols (Copeland et al. 2021). All fish were removed from the trap box and placed in aerated holding containers. Chinook Salmon and steelhead were anesthetized in buffered Tricaine Methanesulfonate (MS-222) solution, scanned for PIT tags, weighed to the nearest 0.1 g, and measured to the nearest 1 mm fork length (FL). We anesthetized no more than 20 juvenile fish at one time to reduce exposure time to the anesthetic. Lengths and weights were recorded for all age-1 Chinook Salmon captured in the spring while age-0 emigrants were subsampled, depending on the number captured in the RST and time/temperature constraints. Lengths and weights were recorded on all steelhead unless high abundances forced crews to subsample. Target species (Chinook Salmon and steelhead) were marked (e.g., PIT tags) and sampled for biological data (e.g., scales).

For Chinook Salmon \geq 60 mm FL and steelhead \geq 80 mm FL, PIT tagging was the primary mark used. Fish were implanted with 12 mm x 2.05 mm PIT tags. All PIT tagging followed established protocols (Kiefer and Forster 1991; PIT Tag Steering Committee 1992; CBFWA 1999). Single-use PIT tag injectors were used at most RSTs (Venditti et al. 2013). Effort was made to tag all steelhead and all age-1 Chinook Salmon smolts. Young of the year Chinook Salmon were subsampled based on the minimum number of tags needed to obtain abundance. survival, and smolt-to-adult survival rates (SARs; LGR to LGR) while not exceeding permitted take limits (Copeland et al. 2021). The number of tags placed to estimate trap efficiency was controlled by the number needed for statistical estimation of abundance with desired precision and the concurrent efficiency of the RST (Copeland et al. 2021). Tagging and marking of Chinook Salmon and steelhead at the Potlatch River, Lemhi River, and Hayden Creek traps differed from other traps because of the need for monitoring fish at younger life stages as part of Intensively Monitored Watershed studies (Uthe et al. 2017). At the Hayden Creek, the upper Lemhi River, and the lower Lemhi River RSTs, steelhead 60-79 mm FL were implanted with 9-mm PIT tags. Chinook Salmon <60 mm FL were not tagged unless smaller PIT tags were used; however, in locations where smaller Chinook Salmon (<60 mm) make up a substantial proportion of the total emigrants, Bismarck Brown Y stain was used to mark subsamples of fish that were 35-59 mm FL for mark-recapture abundance estimates (Venditti et al. 2015a). Fish recovered from handling in large, lidded perforated plastic containers placed in the stream with sufficient free flow of water or in buckets of water with aeration and temperature control prior to release into the stream.

Incidental catches of other non-target species were enumerated, a subsample of each species was measured for length and weight depending on catch, and all were then released downstream of RSTs. All ESA-listed species were processed first to minimize duration of stress.

Juvenile Pacific Lamprey were anesthetized with MS-222, counted, measured to the nearest 1mm total length (TL), identified as either an ammocoete or macrophthalmia based on the presence or absence of visible eyes, and subsampled for genetic tissue with a fin clip. Protocols for collecting data and samples from Pacific Lamprey were adapted from the Nez Perce Tribe (Mike Kosinski, Nez Perce Tribe, personal communication).

Trap efficiency was estimated using fish that were newly marked with either PIT tags, stain, or ventral fin clips by releasing those fish upstream from the RST on a daily basis. Subsequent recaptures of marked fish were used to estimate trap efficiency. Efficiencies were based on marked salmonids that were recaptured after the release. To meet an assumption of a single capture-recapture method for a closed population, we selected release sites approximately 0.5 km or at least two riffles and a pool upstream of the RST to maximize the probability that marked fish would mix randomly with the general population prior to their recapture (Volkhardt et al. 2007). Release locations had adequate holding habitat to reduce immediate predation risk.

Scale samples were collected from steelhead ≥80 mm FL at most RSTs for ageing. We followed established protocols using either a systematic random sampling method for large abundances (>150 fish in a given season; spring, summer/fall) or sampling all individuals for small abundances (<150 fish in a given season) to collect scales. We attempted to sample up to 150 steelhead at each RST site for each season, and subsequently assign ages to those fish using methods by Wright et al. (2015) and Reinhardt et al. (2022). Fish that were aged were used to estimate proportional age composition of the emigrating cohort by respective season.

Data Management

Tagging data from RST operations are stored in the PIT Tag Information System (PTAGIS) P4 data entry and management tool locally, then uploaded to the PTAGIS database (<u>https://www.ptagis.org</u>). All PIT-tagged and non-PIT-tagged fish data, along with metadata, are uploaded to the Idaho Fish and Wildlife Information System (IFWIS) database (<u>https://fishandgame.idaho.gov/ifwis/portal/page/juvenile-fish-trapping</u>) via the J-Trap application. Data were queried from the IFWIS database for analysis. Steelhead age data were archived in the IDFG BioSamples database (<u>https://collaboration.idfg.idaho.gov/qci/default.aspx</u>). Interested parties can access raw data with permission from IFWIS. Data were checked for accuracy and completeness at several stages (e.g., trap tender prior to initial uploading, trap supervisors, IDFG data coordinators, PTAGIS database managers). After analysis, juvenile abundance and productivity estimates are publicly available via the Coordinated Assessments data exchange website (<u>https://www.streamnet.org/home/data-maps/fish-hlis</u>).

Chinook Salmon Cohort Abundance and Productivity

Abundance at RSTs

Age-specific abundances of Chinook Salmon emigrants passing the RSTs were estimated by season/life stage. Body size and date were used to distinguish cohorts (age-0 from age-1 fish) as two ages could be captured simultaneously, especially in the spring. There are four distinct life stages designated for juvenile Chinook Salmon at RSTs based on age and standard calendar periods that are described in Copeland et al. (2021). The spring period is defined as trap deployment through June 30, a period of time dominated by catch of age-1 fish (i.e., smolts) that will be emigrating past LGR that same spring. Smaller age-0 fish are also captured in the spring, depending on the trap site, but are often too small to mark for evaluation. The summer period is July 1 through August 31, a period of time when age-0 fish grow large enough to be marked with PIT tags. The fall period is September 1 through the end of the trapping year, a period of time when age-0 fish appear to actively emigrate out of upper tributary rearing reaches (Chapman 1966; Venditti et al. 2015b). Seasonal life stage abundances are calculated by stratifying fish by seasons, summing by complete BY, and processing the strata in R statistical software (R Development Core Team 2021). Abundance estimates of age-0 fish captured in 2021 and age-1 smolts captured in the spring of 2022 were used to complete the total estimate for brood year (BY) 2020.

We calculated emigrant abundance estimates from RST operations with the stratified Lincoln-Petersen estimator with Bailey's modification:

$$N = m_i(c_i + 1) / (r_i + 1)$$

where *N* is abundance of juveniles emigrating in a given season or year, *i* is season (defined below for each species), *c_i* is the number of all unique fish captured in season *i*, *m_i* is the number of tagged fish released in season *i*, and *r_i* is number of recaptures in season *i*. (Bailey 1951). The estimator is computed using an iterative maximization of the log likelihood (Steinhorst et al. 2004), using R statistical software (R Development Core Team 2021) and is located at the following webpage location: <u>http://ifwisshiny.idfg.state.id.us:3838/JLM/IDFGStatApps/</u>. The method assumes that fish are captured independently with probability *p* (equivalent to trap efficiency) and tagged fish mix thoroughly with untagged fish. We computed 95% confidence intervals with the bootstrap option (10,000 iterations).

Survival and Abundance at LGR

We estimated survival rates of PIT-tagged Chinook Salmon emigrants from each RST to LGR by life stage. BY, and season and used the survival rates to calculate the abundance of smolts at LGR. Estimates were made separately for each life stage described in the "Abundance at RST" methods because of their inherent differences in survival (Copeland et al. 2021). Survival of juvenile Chinook Salmon was estimated using PIT tag detections at juvenile bypass systems on main stem Snake and Columbia and river hydrosystem dams (Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville) and the estuary towed PIT tag array. The Lower Granite Spillway PIT tag detection site was included in the analysis and is the only hydrosystem site in the Columbia River basin to detect juvenile fish passing over a main stem a spillway. We assumed that tagged fish represented untagged fish in each life stage group. The data used to calculate survival were queried from the PTAGIS database in Advanced Reporting (https://www.ptagis.org/). Tagging detail data (i.e., the tagged fish from the RSTs) and Interrogation data (i.e., the PIT tag detections at the dams on the Snake and Columbia rivers) were used. The software program PitPro (Westhagen and Skalski 2009) was used to translate raw PTAGIS PIT-tag data into usable capture histories. This program implements a Cormack-Jolly-Seber model to output the basic point estimates of survival (RST to LGR) and detection probabilities at the dams. Cohort abundance of smolts at LGR was calculated by multiplying the seasonal abundance estimates by the survival proportion estimates before summation.

Productivity

Productivity was estimated at the watershed scale where RSTs operated (i.e., juveniles), and at the larger Snake River basin scale at LGR (i.e., smolts). It is important to examine whether productivity is more limited in the tributary watershed versus the migration to LGR to better understand limiting factors and where they occur. In addition to the results of stock-recruit analysis, this report presents the relationship between Chinook Salmon juvenile productivity and

adult spawner abundance at ten locations for brood year 2020 (Bowersox and Biggs 2012; Venditti et al. 2015b; Apperson et al. 2016; Uthe et al. 2017). This metric was estimated using either redd counts or the escapement estimate above a weir and the number of smolts that survived to Lower Granite Dam.

Adult-to-smolt productivity was also modeled with stock-recruitment analysis at five RST locations with sufficient completed BYs (i.e., BIG2C, MARTR2, LEMTRP, PAHTRP, SAWTRP) and updated through brood year 2020. Additionally, this analysis was conducted in the 2021 Idaho Anadromous Emigrant Monitoring report for selected RSTs that are no longer in operation (i.e., KNOXB, MARTRP, REDTRP, AMERR, CFCTRP, COLTKC). Estimates of the number of redds (estimated from single or multiple pass surveys) or number of females (estimated from weir passage) above RSTs were taken as a measure of "stock" and estimated number of smolts at LGR were taken as a measure of "recruits" (Heller et al. 2023; Ruthven et al. 2023). The stock-recruit relationship was modeled using a log_e transformed Beverton-Holt (Beverton and Holt 1957) model:

$$log_{e}[R] = log_{e} \left(\frac{(\alpha * S)}{(1 + \beta * S)}\right),$$

where recruits (*R*) is a function of stock (*S*), α is the maximum recruitment rate at low spawner abundance, β is the level of density dependence, and alpha/beta provides an estimate of the asymptote. A Bayesian hierarchical approach was used to estimate global and trap-level parameter estimates. This framework assumes parameters for groups (e.g., populations) are distributed around global or shared parameters (Gelman and Hill 2007). Analysis was conducted using the R2jags package (Su and Yajima 2015) in R statistical software (R Development Core Team 2021), which executes code in Program JAGS (Plummer 2003) from the R statistical software interface.

Steelhead Emigrant Abundance and Productivity

Abundance at RSTs

Age-specific abundances of steelhead emigrants passing RST were estimated by season. Estimated ages based on scale data were used to distinguish the multiple BY cohorts captured simultaneously. Season designations followed standard calendar periods and are based on the major periods of fish movement, which is consistent with past reports (e.g., Copeland et al. 2015; Apperson et al. 2017; Belnap et al. 2018). Peak migration varies among populations but generally, juveniles either emigrate out of natal systems primarily in the spring or in the fall. The spring period is defined as the time when RSTs were installed in late winter or early spring through May 31. The summer period is June 1 through August 14, and the fall period was August 15 through trap removal, usually between late October and early December depending on site conditions. Emigration past the RSTs generally increases in the fall period compared to the summer period. The summer and fall periods are pooled when there are not sufficient recaptures or catch to report a reliable estimate. If recaptures and catch numbers are sufficient, abundance is stratified and summed across summer and fall periods. Mark recapture analyses for steelhead at RSTs are similar to protocols for Chinook (see above) but use different seasonal strata.

Productivity

The adult-to-juvenile productivity of steelhead at RSTs was estimated by dividing the sum of estimated juvenile abundances by brood year cohort across seasons and years by the number

of adult female spawners that produced them. The number of adult female spawners was obtained from either PIT tag array or weir counts or estimates at sites with both a RST and an array or weir. These adult abundances and the methods used to estimate them are reported annually in our adult steelhead report (Smith et al. 2021). In general, spring emigrant age composition is older than summer and fall emigrant age composition and summer and fall are typically similar. Therefore, age compositions. Scale sample age proportions were directly applied to the seasonal emigrant abundance estimates. Brood tables were constructed by summing emigrant abundances by cohort, then dividing by the number of female spawners upstream of the RST to calculate brood year productivity. This report provides complete productivity estimates through BY 2017.

RESULTS

Rotary Screw Trap Operations

Rotary screw traps were operated at 10 sites in the Salmon River basin and five sites in the Clearwater River basin (Appendix A). Of these traps, 10 have operated annually at the same sites for a minimum of 14 years. Rotary screw traps have operated in Fish Creek for 27 years since 1994, the Lemhi, Upper Salmon, and Pahsimeroi rivers for 30 years since 1992, and Crooked River for 32 years since 1990. Calendar year 2022 represents the seventh complete year of operation for two RSTs included in this report (Lower South Fork Salmon, North Fork Salmon, and Lower Lochsa rivers). All RSTs included here were operated by IDFG.

Most RSTs were operated during three seasons (spring, summer, and fall). However, streamflow was insufficient during the summer and fall to operate two traps in the Potlatch River basin (Big Bear Creek and East Fork Potlatch River) and one trap in the Salmon River basin (Hayden Creek). Summer flows typically limit RST operations in the Potlatch River; thus, we assumed emigration was negligible during the summer. However, at Hayden Creek a log jam diverted flows preventing operation of RSTs during late summer and fall. The Moose Fire also prevented the operation of the North Fork Salmon River RST for 10 days and the Lower Lochsa and South Fork Salmon River RSTs were inoperable for a few days in the summer due to increased water temperatures. Hatchery smolt releases also prevented the Rapid River, South Fork Salmon River, Pahsimeroi, and Lower Lochsa RSTs from operating between 2-23 days. In general, the majority of the RSTs were operated for most of the trapping season, and therefore, we can report reliable emigrant information for all seasons except winter (Appendix B).

Annual Chinook Salmon Emigrant Abundance at RSTs

Rotary screw trap catches of Chinook Salmon varied greatly among traps, but tended to be higher in the Salmon River basin (Table 2). Chinook Salmon emigrant abundance varied across nine RSTs in the Salmon basin from 2,606 fish at the Hayden Creek site to 137,104 fish at the Lower South Fork Salmon River site. No estimate was made in Rapid River due to low numbers of fish captured. In the Clearwater River basin, no estimates for Chinook Salmon were made at Big Bear Creek, East Fork Potlatch, and Fish Creek due to low numbers of fish captured. Chinook Salmon emigrant abundance was 663 fish at Crooked River and 4,530 at the Lower Lochsa River RST. Almost all of the emigrants captured at the Lochsa and Crooked River RST were spring emigrants migrating directly toward the ocean.

Cohort Chinook Salmon Emigrant Abundance at RSTs

Operations in spring 2022 completed sampling for BY 2020. Rotary screw trap catches for BY2020 Chinook Salmon were variable across traps. Chinook Salmon abundances in the Salmon River basin ranged from 16,918 fish at the Upper Salmon River to 156,847 fish at the Lower Marsh Creek RST (Table 3). In the Clearwater River basin abundance of juvenile Chinook Salmon were not estimated for Big Bear Creek, East Fork Potlatch, Fish Creek, and Lower Lochsa River RSTs due to low numbers of tagged fish and a lack of recaptured fish. For Crooked River, the Chinook Salmon abundance estimate was 983 fish. The complete time series of abundance and productivity estimates are presented in Appendix D.

Chinook Salmon Survival and Productivity

In general, survival of emigrants from RSTs to LGR by BY was influenced by life stage and varied from 0.085 to 0.775 (Table 3). Survival to LGR increased for each successive life stage within a brood year across all RSTs except for the South Fork Salmon River and the Pahsimeroi River. The summer age-0 emigrants from the South Fork Salmon River had higher survival (0.428) than the emigrating fall age-0 (0.338). Emigrating spring age-0 from the Pahsimeroi River also had higher survival (0.338) than the summer age-0 (0.261) and fall age-0 fish (0.253).

Productivity of Chinook Salmon BY2020 juveniles at RST sites varied from 201 juveniles per female spawner in the Lemhi River to 1,736 juveniles per female spawner in Big Creek in the Salmon River basin. The RST at Crooked River caught very few juvenile Chinook Salmon in the trap so productivity could not be estimated (Table 4).

Productivity of Chinook Salmon BY2020 smolts at LGR varied from 13 smolts per female spawner from Hayden Creek to 835 smolts per female spawner from Big Creek in the Salmon River basin. The RST at Crooked River caught very few juveniles in the trap so productivity could not be estimated (Table 4).

Beverton-Holt models have been conducted in past reports showing the relationship between smolts at LGR and adult female spawner abundance in places where rotary screw traps currently operate. The Beverton-Holt models suggest that density-dependent mechanisms are influencing production of smolts that survive to LGR more in the Upper Salmon River MPG, than in the Middle Fork Salmon MPG (Figure 3; Table 5).

Steelhead Emigrant Abundance and Productivity

Juvenile steelhead emigrant abundances were estimated at all RST sites that operated across ten steelhead populations in the Salmon River basin and five in the Clearwater River basin (Table 6). Estimated abundance of steelhead emigrants >80 mm varied from 1,493 fish in Marsh Creek to 26,573 fish in Big Creek for Salmon River basin populations. In the Clearwater River basin, abundances varied from 823 fish in Crooked River to 30,554 fish in the Lochsa River.

The catch of steelhead <80 mm FL, which were generally not marked to estimate trap efficiencies, varied across RST within the Salmon River and Clearwater River basins. In the Salmon River Basin, catch of steelhead <80mm FL ranged from five fish in the Lower Lemhi River to 1,976 fish in the South Fork Salmon River. Steelhead catches <80 mm FL for the Clearwater River basin ranged from 2 fish in Big Bear Creek to 29 fish in Crooked River. There were no steelhead <80 mm FL reported for the East Fork Potlatch River (Appendix C).

Scale samples were collected from juvenile steelhead at 13 RSTs, with ages assigned to 3,798 fish (Table 7). Juvenile steelhead ages varied from 0 to 5 years, and in general an older age distribution was observed in the spring than the summer/fall period at most RSTs.

Emigrant abundance, juvenile age proportions, and female spawner abundance data were used to produce adult-to-juvenile productivity estimates for BY cohorts at seven RST locations in the Salmon River MPG and four RST locations in the Clearwater River MPG (Appendix E). Productivity for steelhead BY2017 in the Salmon River basin ranged from 76 emigrants per female spawner in Lower Lemhi River to 554 emigrants per female spawner in the Upper Lemhi River. Productivity in the Clearwater River basin varied from 138 emigrants per female spawner in Fish Creek to 959 emigrants per female spawner in the East Fork Potlatch River. Compared to the mean of previous years, steelhead productivity in the Salmon River basin was low in the Upper Salmon, Pahsimeroi, and Lower Lemhi rivers, and high in Rapid and Lower Lemhi rivers. Steelhead productivity in the Clearwater River basin was low in the East Fork Potlach River, Crooked River, Fish Creek, and high in Big Bear Creek.

Plots of complete cohort estimates through BY2017 were presented in Figures 4 and 5. Even though age five emigrants are only complete through BY2017, BY2018 data are included in the plots because so few age-5 emigrants are aged and there is a high likelihood some of these could be resident Rainbow Trout (Appendix E). This adds another data point to each stream's time series and will be adjusted next year if there are any age five emigrants for BY2018. Trend lines indicate that populations in both MPGs generally experience density dependence, with juvenile productivity declining with increasing spawner escapement, with the exception of Crooked River which had an inverse relationship. The weir that operates at Crooked River is ineffective at capturing adult steelhead during spring conditions. However, juvenile fish are still caught in the RST occasionally. No females were estimated to return in BY2018 so there was no productivity measure for this year in Crooked River.

Pacific Lamprey Catch

Pacific Lamprey were captured at the South Fork Salmon River and the Lochsa River RSTs (Table 8). A total of 3,116 Pacific Lamprey were captured at the South Fork Salmon River trap, consisting of 2,130 ammocoetes and 986 macrophthalmia. The total length of lamprey in the South Fork Salmon River varied from 120 mm to 170 mm. A total of 131 Pacific Lamprey were captured at the Lower Lochsa River trap, of those 129 were ammocoetes and two were macrophthalmia. Total lengths for lamprey from the Lower Lochsa River RST varied from 68 mm to 140 mm.

DISCUSSION

Adult-to-juvenile productivity estimates provide insight to the quality and quantity of habitat available in Idaho. Adult-to-juvenile productivity estimates for Chinook Salmon at both the watershed scale (i.e., juveniles at RSTs) and at a larger basin scale (i.e., smolts at LGR) varied widely in 2022. However, productivity estimates were higher in the Upper Salmon River and Middle Fork Salmon River major population groups. The number of emigrants passing each trap was influenced by the habitat quantity and quality upstream from RSTs and the intrinsic productivity unique to each stream. Distinct differences in productivity among populations were evident, as expected with large spatial and temporal variability (Table 4). To better understand the differences in productivity among populations, factors affecting success of rearing and overwintering of juvenile fish should be further assessed in natal reaches upstream of RSTs. The

Intensively Monitored Watershed (IMW) studies monitor and evaluate potential limiting factors specific to juveniles rearing in natal tributary habitat and response to habitat restoration actions in the Potlatch and Lemhi River watersheds. Information on fish response to habitat restoration actions will help guide future projects to improve Chinook and steelhead abundance, survival, and productivity in natal tributary habitat. Not only is this information valuable in these IMW watersheds, but this information is useful for other systems that have received habitat restoration efforts but may not be monitored to the same extent.

The stock-recruit analysis of smolt-to-adult productivity of Chinook Salmon indicated a density-dependent relationship between spawning female abundance and smolts that were estimated to survive to LGR (Figure 3). Density-dependent smolt production has been shown for Snake River spring/summer Chinook Salmon (Walters et al. 2013; Camacho et al. 2019), but the extent to which density dependence regulates smolt production across all populations is variable. Adult-to-juvenile productivity estimates for Chinook Salmon in the Upper Salmon River MPG appear to be more limited by density dependence than the Middle Fork Salmon MPG. The Lower Marsh Creek and Big Creek RSTs showed little evidence of reaching asymptotic smolt production over the observed range of female abundance. The specific mechanisms that cause density dependent mortality in juvenile Snake River spring/summer Chinook Salmon are unclear, although we suspect competition among juveniles due to habitat loss from anthropogenic disturbances and/or hatchery influence to be likely contributors.

Steelhead exhibit two characteristics that complicate survival estimation. First, juvenile Idaho steelhead may spend more than one winter rearing downstream of the RST before becoming a smolt. Second, steelhead smolts can vary in age from age-1 up to age-7 (Peven et al. 1994) with overlapping length ranges by age making a CJS model not feasible for estimating survival. A model framework has been created using the Basin TribPIT program (see Chapter 2) that allows flexibility for delayed migration and multiple tributary releases (i.e., years tagged at an RST) for a given brood year. The model structure needs to be customized based on the unique characteristics of each steelhead population. Because of time constraints in 2022, evaluating steelhead survival for all RSTs was not feasible but was implemented for four RSTs in the Clearwater River basin and one RST on Hayden Creek (Chapter 2).

Consideration of mark-recapture assumptions should be a regular part of RST operation and data analysis (Copeland et al. 2021; Roper and Scarnecchia 2000). Some assumptions may need annual checking but all should be re-visited at regular intervals. Prior to 2021 (see Chapter 2 of Heller et al. 2022), no assumptions had been tested for steelhead at IDFG's RSTs and it had been many years since assumptions had been checked for Chinook Salmon. Distance of releases upstream of the RST location should be evaluated, especially for newer traps. The number of days for efficiency recaptures at each trap should also be evaluated. For example, Pahsimeroi recapture efficiencies were changed from 5 to 10 days because of distance and habitat between release site and RST. However, for the South Fork Salmon River RST there were no significant differences in recapture efficiencies between release sites (see Chapter 2 of Heller et al. 2022). If mark-recapture assumptions are being violated, then operations and analysis should be adjusted to produce valid estimates.

RECOMMENDATIONS

The following recommendations would improve our understanding of population status and trends in the juvenile freshwater life stage of Chinook Salmon and steelhead, and would improve reporting efficiency and effectiveness.

- Integrate the juvenile emigrant steelhead survival into the annual emigrant report and use the Basin TribPIT model to estimate juvenile emigrant steelhead survival rates to LGR for all other RST sites where data is sufficient.
- Validate the Oldemeyer (2015) model by populating it with historical data and compare those estimates with estimates obtained from Program R. Refine the model and implement where warranted.
- Continue to add annual information to the historical adult-to-juvenile productivity data series for both Chinook Salmon and steelhead populations presented in this report. Refine historical information as existing datasets are verified and estimation methods are improved.
- Incorporate testing of mark-recapture assumptions as a regular part of RST operations and data analyses.
- Periodically revisit tagging methodology strategy for each trap and across the fleet of RSTs.

ACKNOWLEDGEMENTS

We acknowledge Bonneville Power Administration and our contracting officer's technical representative Russell Scranton, for partial project funding and support through the following projects: 1990-055-00 Idaho Steelhead Monitoring and Evaluation Studies and 1991-073-00 Idaho Natural Production Monitoring and Evaluation Program. Additional funding and support was provided by the Pacific States Marine Fisheries Commission through the Intensively Monitored Watersheds program (Monitoring State Restoration of Salmon Habitat in the Columbia basin. contract 12-10), Pacific Coast Salmon Recovery Fund (project 006 15CW), and the Integrated Status and Effectiveness Monitoring Project (BPA project 2003-017-00). Operation of the Rapid River weir and trap tender time for steelhead was funded by Idaho Power Company. Fieldwork was conducted by the following personnel, listed by administrative region: Clearwater Region (CeCe Stephenson, Elizabeth Kennedy, Kyle King, Phillip DeVault, Samuel Patterson, Sam Zabronsky, Micaela Gonzalez, Robert Halso, and Colton MacInnis); McCall office of the Southwest Region (Kaitlyn Wauhkonen, Evan Matos, Kiley Denison, Chloe Lyles, Luke Guasco, and Michael Corley); Salmon Region (Alma Nunez Gutierrez, Hunter Distad, Vasili Luzanau, Quinn Richard, Anthony Dangora, Eddy Kapp, Hana Haakenstad, Chase Cote, Kade Linder); and Nampa Research Office (Ron Roberts, Alexzander Dash, Gavin Grainger, Caroline Varie, Christian Tomt, Cutler Dunn, Erika Alvarado). Scale ageing was conducted by the Nampa Research Anadromous Ageing Laboratory personnel (Leslie Reinhardt, Karen Gregory, Alex Stacy, Thyme Cooke, and Madison Myers). Idaho Department of Fish and Game Technical Services Bureau, especially Chris Harrington, provided technical oversight for the emigrant trapping dataset and developed the JTrap Uploader program. This report benefited from reviews by Tim Copeland and Marika Dobos. Cheryl Leben helped format and edit the document.

CHAPTER 2

ESTIMATING SURVIVAL AND ABUNDANCE OF WILD STEELHEAD SMOLTS TO LOWER GRANITE DAM

ABSTRACT

Anadromous parr survival and subsequent smolt abundance estimates are important for monitoring productivity and population success and can be used to compare performance across populations. The purpose of this chapter was to build upon the previous work estimating survival of juvenile steelhead Oncorhynchus mykiss from multiple rotary screw traps (RSTs) in the Clearwater and Salmon River basins. Big Bear Creek, East Fork Potlatch River, Fish Creek, and Hayden Creek were used to examine survival of steelhead juveniles from the RSTs to Lower Granite Dam (LGR) and estimate the number of smolts at LGR by brood year (2005–2019). Patterns in BY survival were quite different among traps, corresponding to differences in life histories expressed at each location. Steelhead smolt abundance at LGR varied an order of magnitude across BYs. Several issues must be addressed to implement these procedures at other locations. Decisions about applications will need to be strategic and balance data availability with the goal of estimating population smolt production. These estimates will be valuable in assessing overall life cycle survival and hydrosystem effects on steelhead. Future investigations using this method will help identify population-specific characteristics in juvenile movement and rearing, which are useful in assessing and guiding large restoration programs focused on large basin-scale improvements.

Authors:

Marika E. Dobos Anadromous Staff Biologist

Amber N. Young Regional Fisheries Biologist

INTRODUCTION

Migration survival and subsequent smolt abundance of juvenile salmonids are critical metrics that are used to evaluate population viability. Apparent survival of wild juvenile Snake River basin salmonids are typically estimated using a Cormack-Jolly-Seber (CJS) model (Cormack 1964; Jolly 1965; Seber 1982). Survival of smolts is estimated to Lower Granite Dam (LGR) using fish that are PIT tagged at rotary screw traps (RST) and their subsequent detections at hydrosystem facilities as they migrate downstream to the ocean. The CJS model is sufficient when all fish of a given cohort are migrating within the same year or season, as is often the case with juvenile spring/summer Chinook Salmon *Oncorhynchus tshawytscha* or hatchery-reared juvenile salmon and steelhead *O. mykiss* (Buchanan et al. 2015).

Wild steelhead exhibit complex early life history movements and rearing strategies that do not meet the assumptions of the CJS model needed for estimating survival. Wild juvenile steelhead may overwinter and even spend several years rearing downstream of the RST in mainstem rivers before migrating to the ocean (Figure 6). The number of years juvenile steelhead can rear in freshwater can vary from one to seven years (Peven et al. 1994; Dobos et al. 2020) and lengths overlap among ages. Accurate ages need to be associated for each PIT-tagged fish to track brood year cohort success, but logistics limit the portion of PIT-tagged fish that are aged through scale samples.

In this chapter, wild juvenile steelhead captured, PIT tagged, and released at RSTs in Big Bear Creek, East Fork Potlatch River, and Fish Creek from the Clearwater River basin and Hayden Creek from the Salmon River basin were used to estimate brood year survival to Lower Granite Dam (LGR) using the Lowther-Skalski model through the Basin TribPIT program (Lady et al. 2017). Steelhead survival and abundance were estimated for Big Bear Creek in the 2019 report (see Feeken et al. 2020 Chapter 2) and the purpose of this chapter was to examine feasibility to apply methods to other existing datasets and evaluate survival at other RSTs where data was sufficient. Specifically, we present analyses for steelhead emigrants from East Fork Potlatch, Fish Creek, and Hayden Creek as well as updating the previous work done for emigrants from Big Bear Creek. We examined methods to assign ages to PIT-tagged fish and estimate survival to LGR based on age, migration pathway, and brood year. Age-length keys were used to assign ages to unaged, PIT-tagged juvenile steelhead (Dobos et al. 2023). The Lowther-Skalski model is a multi-state release-recapture model that allows flexibility for delayed migration and multiple tributary releases (i.e., years tagged at a RST) for a given cohort (i.e., brood year) and was used to estimate survival of smolts to LGR (Buchanan et al. 2015).

METHODS

Cohort abundance at RST

Seasonal abundances of juvenile steelhead at Big Bear Creek, East Fork Potlatch River, Fish Creek, and Hayden Creek RSTs were estimated using methods outlined by Chapter 1 of this report. Trapping juveniles at Big Bear Creek and the East Fork Potlatch River during the summer and fall is often not feasible due to extreme low flows; therefore, only data during the spring seasons were used. Summer and fall seasons for Hayden Creek were pooled together. A subsample of PIT-tagged juvenile steelhead were aged and all PIT-tagged fish were designated into 10-mm length intervals for each year and season. Unaged fish were then assigned ages based on the proportions of aged fish in each bin for a given season and trapping year (Dobos et al. 2023). Age proportions from aged and age-assigned fish were then multiplied by the seasonal

abundance estimates to calculate total estimates of juvenile steelhead for each age group (i.e., brood year). Juveniles from a given brood year were then summed across trapping years for a total brood year cohort estimate that emigrated at each RST site. Detailed demographic data of all juveniles trapped at the RST were reported in Chapter 1 of this report.

Estimating Survival to LGR

Program and Uploading Files

The Basin TribPIT program and instructions manual can be downloaded from the Columbia Basin Research website at http://www.cbr.washington.edu/analysis/apps/BasinTribPit. Two inputs were needed for the model: 1) mainstem river observation history, and 2) age data for individual PIT-tagged fish. For the mainstem river observation history, a list of all known PIT tags implanted in juveniles at the RSTs across brood years was generated from the PTAGIS website (www.ptagis.org). The PIT lists uploaded tag were at http://www.cbr.washington.edu/dart/guery/pit tagids using the Basin TribPIT "Observation File" option to generate the observation history for all juveniles PIT tagged at the RSTs. For the age data, all PIT tagged juvenile steelhead from each trap were paired with their assigned brood year based on age determined either from scales or assigned from the age-length key method if scales were not sampled. The observation and age data files were loaded into the Basin TribPIT program.

Model and Output

Detection data were organized in a matrix three ways: by the year juvenile steelhead were tagged and released, by brood year, and by year they were detected at respective interrogation sites (e.g., hydrosystem dams). Lower Granite Dam was the only site where survival was estimated so all interrogation sites upstream of LGR were excluded. All juvenile detections downstream of LGR were pooled to estimate the probability of detecting a PIT-tagged juvenile steelhead at LGR, given that it passed the dam. Models were fitted to each brood year separately and across all release year's juveniles from a given brood year emigrated at RST sites.

Each brood year cohort had groups of fish that were PIT tagged and released as exiting their natal tributary system in a given year (i.e., release groups). Each release group could exhibit one of four potential pathways to the ocean; 1) directly migrate the same year released, 2) overwinter and migrate the following spring, 3) overwinter twice and migrate that following spring, and 3) overwinter three times and migrate that following spring (Figure 6). The multi-state capture-recapture model estimates a joint probability of migrating to the ocean in a certain year and surviving that migration (i.e., survival parameter).

Models were run for each brood year cohort separately, and survival to LGR was estimated for each migration pathway of each release group where there was a sufficient number of PIT tags detected. Estimated abundance of each release group for a given brood year was multiplied by the survival estimated for each pathway those fish exhibited. For example, the 2002 release group from brood year 2002 was estimated at 2,000. A portion of those fish directly migrated to the ocean the same year and a portion overwintered and migrated out the following spring. Survival for direct migrants was 60% and those that overwintered had a survival of 30%. There were 1,200 direct migrant smolts and 600 overwintering smolts that survived to LGR. Total brood year production of smolts at LGR was the sum of fish that survived to LGR across all migration pathways for each release group. Overall brood year survival was the total number of

smolts estimated to have survived to LGR divided by estimated total abundance of juveniles at the RST.

RESULTS

Cohort Steelhead Emigrant Movement Patterns

Wild juvenile steelhead exhibited a variety of movement patterns that varied across trapping sites (Figure 7). Juveniles at RSTs that emigrated from tributary watersheds ranged in age from zero to four years old. The most common movement pattern overall was fish that emigrated in the spring as an age-2 fish and directly migrated to LGR (Figure 7). However, the most common movement pattern for juveniles in Fish Creek was to emigrate as age-2 fish in the fall and overwinter for one winter period before migrating to the ocean. The highest diversity in age and movement patterns was observed in Fish Creek where juveniles ranged in age from zero to four years old and held in freshwater habitat up to three winters downstream of their natal tributary watershed before being detected moving downstream to the ocean.

Steelhead Survival, Abundance, and Productivity

Survival of juvenile steelhead varied across BYs and watersheds (Figure 8). Mean survival was related to age at which fish emigrated from their natal tributary watersheds and their movement pattern to LGR. Mean survival was the highest for direct migrants across all ages of juvenile emigrants in Big Bear Creek and age-2 and -3 emigrants in the East Fork Potlatch River. Mean survival was highest for fish that overwintered for one winter across all ages of juvenile emigrants in Fish Creek and age-2 and -3 emigrants in Hayden Creek. In Hayden Creek, age-0 fish had the highest mean survival when they overwintered for two winters and highest mean survival for age 1 fish were those that overwintered for one winter.

Rotary screw trap abundance and age composition of juvenile steelhead across BYs were variable among traps (Figure 9; Appendix F). In the Clearwater River basin, juvenile steelhead abundance by BY varied from 3,994 to 21,356 fish in Big Bear Creek, 1,587 to 38,611 fish in the East Fork Potlatch River, and 2,933 to 90,224 fish in Fish Creek. In the Salmon River basin, juvenile steelhead abundance by BY varied from 2,084 to 20,798 fish in Hayden Creek. Juvenile abundances included age-1 through age-3 fish across most BYs in Big Bear Creek and the East Fork Potlatch River (Figure 9). Juvenile abundances included age-0 fish through age-4 fish across most BYs in Fish Creek and Hayden Creek.

Lower Granite Dam abundance and age composition of smolts across BYs were variable among traps (Figure 9; Appendix F). In the Clearwater River basin, smolt abundance by BY varied from 1,909 to 7,398 fish in Big Bear Creek, 805 to 7,744 fish in the East Fork Potlatch River, and 1,372 to 21,184 fish in Fish Creek. In the Salmon River basin, smolt abundance by BY varied from 792 to 9,001 fish in Hayden Creek. Smolt abundances included age-1 through age-3 fish across most BYs in Big Bear Creek and the East Fork Potlatch River (Figure 9). Smolt abundances included age-2 fish through age-5 fish across most BYs in Fish Creek and age-1 through age-4 fish in Hayden Creek. Age composition at LGR was older than that observed at RSTs.

Overall survival of steelhead emigrant BY cohorts from RSTs to LGR fluctuated among watersheds with no apparent synchronous pattern (Figure 10). The highest mean survival of BY cohorts was observed in Big Bear Creek (0.469) and varied from 0.312–0.601. Mean survival of

BY cohorts was 0.226 (0.071–0.455) for the East Fork Potlatch, 0.438 (0.225–0.576) for Fish Creek, and 0.285 (0.116–0.491) in Hayden Creek.

Productivity of steelhead smolts at LGR varied across brood years and RSTs (Appendix F). In the Clearwater River basin, productivity of steelhead smolts at LGR from Big Bear Creek varied from 12 to 641 smolts per female spawner (BY2007–2020). Productivity varied from 15 to 3,872 smolts per female spawner in the East Fork Potlatch River (BY2007–2020), and varied from 55 to 191 in Fish Creek (BY2005–2019). In the Salmon River basin, productivity of steelhead smolts at LGR from Hayden Creek varied from 29 to 202 (BY2009–2019).

DISCUSSION

The purpose of this chapter was to build upon the work done by Feeken et al. (2019) by estimating survival of juvenile steelhead from selected RSTs. The series for Big Bear Creek was updated through BY2020 and series for three other traps were added. Patterns in BY survival were quite different among traps, corresponding to differences in life histories expressed at each location. The end product of this work is smolt productivity at LGR for steelhead similar to what is done for Chinook Salmon. Available data from the other RSTs mentioned in Chapter 1 must be assessed to guide steps needed to model steelhead survival.

Several issues must be addressed to implement these procedures at other locations. Assigning ages to all PIT-tagged steelhead takes a significant amount of time but the methods were recently worked out by Dobos et al. (2023). Another important decision is the number of age and movement pattern combinations to be modeled. The more complex the population portfolio is for juvenile ages and movements, the more PIT-tag observations are needed as they get partitioned among the different groups. Some combinations may have negligible contributions to population smolt production and can be ignored in order for the model to converge and provide estimates for all combinations for a given brood year. However, excluding groups of fish due to lack of data will affect assessing the full life history portfolio of wild steelhead populations and how that might change over time. The interface to run the model has not been widely used and needs to be updated with flexibilities and functions to improve efficiencies. Decisions about applications will need to be strategic and balance data availability with the goal of estimating population smolt production.

Another challenge is determining which format for reporting survival data is most appropriate for this document. Life history strategies for spring-summer Chinook Salmon are simpler and tracking trends in survival and abundance generally only involves two life history strategies, 1) age-1 fish that leave natal tributary watersheds, directly migrating to the ocean, and age-0 fish that emigrate out and overwinter before migrating to the ocean the following spring. For wild steelhead, age and PIT tag data allow for description of age composition at a screw trap and at Lower Granite Dam, tracking of movement patterns, and estimating abundance or contribution of the different life history strategies. Shifts in these metrics can indicate density dependence, stochastic events, or other environmental conditions that affects diversity traits. Shifts can also indicate population response to habitat or management actions aimed at improving populations. Identifying these processes and tracking these metrics are necessary for evaluating population viability (McElhany et al. 2000). The flexible life history of steelhead makes it challenging to present specific data in a coherent manner.

As this model gets applied to other wild steelhead populations, the process of refining methods and reporting results will evolve. Survival and smolt abundances of wild steelhead were

data gaps in this report and by adding these parameters, we can account for and measure productivity to LGR. These estimates will be valuable in assessing overall life cycle survival and hydrosystem effects on steelhead. Future investigations using this method will help identify population-specific characteristics in juvenile movement and rearing, which are useful in assessing and guiding large restoration programs focused on large basin-scale improvements (e.g., Uthe et al. 2017).

LITERATURE CITED

- Apperson, K.A., E. Stark, K.K. Wright, B. Barnett, D.A. Venditti, R. Hand, P. Uthe, M. Belnap, B. Knoth, R. Roberts, L. Janssen. 2016. Idaho anadromous emigrant monitoring. 2016 annual report. Idaho Department of Fish and Game Report 16-07, Boise.
- Apperson, K.A., E.J. Stark, B. Barnett, M. Dobos, P. Uthe, M. Belnap, B. Knoth, R. Roberts, L. Janssen, and B. Anderson. 2017. Idaho anadromous emigrant monitoring. 2016 annual report. Idaho Department of Fish and Game Report 17-09, Boise.
- Bailey, N.T. 1951. On estimating the size of mobile populations from recapture data. Biometrika 38:293-306.
- Belnap, M.J., K.A. Apperson, E. Felts, E.J. Stark, B. Barnett, M. Dobos, P. Uthe, B. Knoth, R. Roberts, and L. Janssen. 2018. Idaho anadromous emigrant monitoring. 2017 annual report. Idaho Department of Fish and Game Report 18-11, Boise.
- Beverton, R.J.H, and S.J. Holt. 1957. On the dynamics of exploited fish populations. Fisheries Investment Series 2. 19. UK Ministry of Agriculture and Fisheries. Chapman and Hall, London.
- Bjornn, T.C. 1978. Survival, production, and yield of trout and Chinook Salmon in the Lemhi River, Idaho. College of Forest, Wildlife and Range Sciences, University of Idaho, 040:1-57.
- Bowersox, B., and M. Biggs. 2012. Monitoring state restoration of salmon habitat in the Columbia basin, Interim report for the National Oceanic and Atmospheric Administration, Idaho Department of Fish and Game, Boise.
- Buchanan, R.A., J.R. Skalski, G. Mackey, C. Snow, and A.R. Murdoch. 2015. Estimating cohort survival through tributaries for salmonid populations with variable ages at migration, North American Journal of Fisheries Management, 35: 958-973, DOI: 10.1080/02755947.2015.1064837.
- Busby, P.J., T.C. Wainwright, G.J. Bryant, L.J. Lierheimer, R.S. Waples, F.W. Wauneta, and I.V. Lagomarsino. 1996. Status review of West Coast steelhead from Washington, Idaho, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-27.
- CBFWA (Columbia Basin Fish and Wildlife Authority). 1999. PIT tag marking procedures manual (<u>http://wiki.ptagis.org/images/e/ed/MPM.pdf</u>).
- Camacho, C.A., T. Delomas, M. Davison, M.E. Dobos, W.C. Schrader, M.R. Campbell, and T. Copeland. 2019. Wild juvenile steelhead and Chinook Salmon abundance and composition at the Lower Granite Dam, migratory year 2018. 2018 annual report. Idaho Department of Fish and Game 19-12, Boise.
- Chapman, D.W. 1966. Food and space as regulators of salmonid populations in streams. American Naturalist 100:345-357.
- Copeland, T., B. Barnett, W.C. Schrader, K.A. Apperson, L. Janssen, and R.V. Roberts. 2021. Protocols for trapping anadromous emigrants in Idaho. 2021 report. Idaho Department of Fish and Game, Boise.
- Copeland, T., and D.A. Venditti. 2009. Contribution of three life history types in a Chinook Salmon (*Oncorhynchus tshawytscha*) population. Canadian Journal of Fisheries and Aquatic Sciences 66:1658-1665.

- Copeland, T., D.A. Venditti, and B.R. Barnett. 2014. The importance of juvenile migration tactics to adult recruitment in stream-type Chinook Salmon populations. Transactions of the American Fisheries Society 143:1460-1475.
- Copeland, T., E.W. Ziolkowski, R.V. Roberts, and K.A. Apperson. 2015. Idaho Steelhead monitoring and evaluation studies. 2014 annual report. Idaho Department of Fish and Game Report 13-07, Boise.
- Cormack, R.M. 1964. Estimates of survival from the sighting of marked animals. Biometrika 51:429–438.
- Crawford, B.A., and S.M. Rumsey. 2011. Guidance for monitoring recovery of Pacific Northwest salmon and Steelhead listed under the Federal Endangered Species Act. U.S. Department of Commerce, National Marine Fisheries Service, NW Region.
- Dobos, M.E., B.J. Bowersox, T. Copeland, and E.J. Stark. 2020. Understanding life history diversity of a wild steelhead population and managing for resiliency. North American Journal of Fisheries Management 40:1087–1099.
- Dobos, M.E., J.L. McCormick, B.J. Bowersox, and T. Copeland. 2023. Applications of age-length keys for assigning ages to juvenile steelhead. North American Journal of Fisheries Management.
- Feeken, S.F., B. Barnett, E. Felts, E.J. Stark, M. Davison, J.R. Poole, C. McClure, B.A. Knoth, and M.E. Dobos. 2020. Idaho anadromous emigrant monitoring. 2019 annual report. Idaho Department of Fish and Game Report 20-09, Boise.
- Gelman, A., and J. Hill. 2007. Data analysis using regression and multilevel/ hierarchical models. Cambridge: Cambridge University Press.
- Heller, M., B. Barnett, E. Felts, M. Davison, N. Smith, B.A. Knoth, J.R. Poole, S.F. Meyer, and K. Wauhkonen. 2022. Idaho anadromous emigrant monitoring. 2021 annual report. Idaho Department of Fish and Game Report 22-07, Boise.
- Heller, M., M. Davison, S. Meyer, B.A. Knoth, and N.R. Smith. 2023. Idaho adult steelhead monitoring. Idaho Department of Fish and Game. 2022 Annual Report. Idaho Department of Fish and Game 23-10, Boise.
- IDFG (Idaho Department of Fish and Game). 2017. Idaho state wildlife action plan, 2015. Boise.
- IDFG (Idaho Department of Fish and Game). 2019. Fisheries management plan 2019-2024. Boise.
- ICBTRT (Interior Columbia Basin Technical Recovery Team). 2003. Independent populations of Chinook, Steelhead, and sockeye for listed Columbia basin ESUs. ICTRT draft report July 2003. <u>http://www.nwfsc.noaa.gov/trt/</u>.
- ICBTRT (Interior Columbia Basin Technical Recovery Team). 2005. Updated population delineation in the interior Columbia basin. Memo to NMFS Northwest Regional Office May 11, 2005.
- Jolly, G.M. 1965. Explicit estimates from capture–recapture data with both death and immigration–stochastic model. Biometrika 52:225–247.
- Kiefer, R.B., and K.A. Forster. 1991. Intensive evaluation and monitoring of Chinook Salmon and Steelhead trout production, Crooked River and upper Salmon River sites. Idaho Department of Fish and Game Annual Progress Report for 1989 to U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife. Contract DE-A179-84BP 13381, Project 83-7. Portland, Oregon.

- Kohler, A.E., P.C. Kusnierz, T. Copeland, D.A. Venditti, L. Denny, J. Gable, B.A. Lewis, R. Kinzer, B. Barnett, and M.S. Wipfli. 2013. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA. Canadian Journal of Fisheries and Aquatic Sciences 70:502-512.
- Lady, J., T. Lockhart, J.R. Skalski, and R. Buchanan. 2017. Program Basin TribPIT: Cohort analysis of juvenile salmonid movement and survival in tributaries. Prepared by Columbia Basin Research for Bonneville Power Administration, Project 1989-107-00, Portland, Oregon.
- McCann, J., B. Chockley, E. Cooper, H. Schaller, S. Haeseker, R. Lessard, C. Petrosky, E. Tinus, E. Van Dyke, and R. Ehlke. 2015. Comparative survival study of PIT-tagged spring/summer/fall Chinook, summer Steelhead, and sockeye, 2015 annual report. Report to Bonneville Power Administration, project 1996-02-00, Portland, Oregon.
- McElhany, P., M.H. Ruckelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt. 2000. Viable salmonids populations and the recovery of evolutionarily significant units. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-NWFSC-42.
- McGrath, C.L., A.J. Woods, J.M. Omernik, S.A. Bryce, M. Edmondson, J.A. Nesser, J. Shelden, R.C. Crawford, J.A. Comstock, and M.D. Plocher. 2002. Ecoregions of Idaho (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,350,000). Available at <u>http://www.epa.</u> <u>gov/wed/pages/ecoregions/id_eco.htm</u>. Accessed October 2015.
- NMFS (National Marine Fisheries Service). 2011. Five-year review: summary and evaluation of Snake River sockeye, Snake River spring-summer Chinook, Snake River fall-run Chinook, Snake River basin Steelhead. NMFS, Northwest Region (<u>http://www.westcoast.fisheries.noaa.gov/publications/status_reviews/salmon_Steelhead_/salmon_Steelhead_esa_status_reviews.html</u>).
- Oldemeyer, B.O. 2015. Juvenile Chinook Salmon life history variation: improved methods for migration monitoring in a wilderness environment. Master's thesis, University of Idaho, Moscow.
- Peven, C.M. 1994. Age and length of steelhead smolts from the Mid-Columbia River Basin, Washington. North American Journal of Fisheries Management 14:77-86.
- PIT Tag Steering Committee. 1992. PIT-Tag marking station procedural manual. Version 1.0. PSMFC, Gladstone, Oregon.
- Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop of Distributed Statistical Computing.
- R Development Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
- Raymond, H.L. 1988. Effects of hydroelectric development and fisheries enhancement on spring and summer Chinook Salmon and Steelhead in the Columba River basin. North American Journal of Fisheries Management 8:1-24.
- Reinhardt, L., T. Copeland, and M. Davison. 2022. Validation of scale-derived ages in wild juvenile and adult steelhead. North American Journal of Fisheries Management 42:260–269.
- Roper, B., and D. Scarnecchia. 2000. Key strategies for estimating population sizes of emigrating salmon smolts with a single trap.

- Ruthven, J.S., B. Barnett, M. Davison, M. Heller, A. Young, and J. Thiessen. 2023. Idaho Adult Chinook Salmon Monitoring. Annual report 2022. Idaho Department of Fish and Game Report 23-08.
- Sanderson, B.L., H.J. Coe, C.D. Tran, K.H. Macneale, D.L. Harstad, and A.B. Goodwin. 2009. Nutrient limitation of periphyton in Idaho streams: results from nutrient diffusing substrate experiments. Journal of the North American Benthological Society 28:832-845.
- Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. Macmillan, New York.
- Smith, N.R., M.E. Dobos, M. Davison, B.A. Knoth, and E.J. Stark. 2021. Idaho adult steelhead monitoring. Idaho Department of Fish and Game, 2020 Annual Report 21-12, Boise.
- Steinhorst, K., Y. Wu, B. Dennis, and P. Kline. 2004. Confidence intervals for fish out-migration estimates using stratified trap efficiency methods. Journal of Agricultural, Biological, and Environmental Statistics 9:284-299.
- Su, Y., and M. Yajima. 2015. R2jags: Using R to run 'JAGS'. R package version 0.5-7. https://CRAN.R-project.org/package=R2jags.
- Uthe, P., B. Knoth, T. Copeland, A.E. Butts, B.J. Bowersox, and J. Diluccia. 2017. Intensively monitored watersheds and restoration of salmon habitat in Idaho: ten-year summary report. Idaho Department of Fish and Game Report 17-14, Boise.
- Venditti, D.A., R. Kinzer, K.A. Apperson, J. Flinders, M. Corsi, C. Bretz, K. Tardy, and B. Barnett. 2013. Idaho supplementation studies brood year 2010 synthesis report. Annual progress report to Bonneville Power Administration. Project number 1989-098-00. Portland, Oregon. Idaho Department of Fish and Game Report 13-09, Boise.
- Venditti, D.A., R. Kinzer, B. Barnett, K.A. Apperson, K. Tardy, M.P. Corsi, M. Belnap, and C. Bretz. 2015a. Idaho supplementation studies, Brood Year 2012 Synthesis Report August 1, 2012–July 31, 2014. Annual progress report to Bonneville Power Administration, Project No. 198909800, Portland, Oregon. Idaho Department of Fish and Game Report 15-16, Boise.
- Venditti, D.A., R.N. Kinzer, K.A. Apperson, B.B. Barnett, M. Belnap, T. Copeland, M.P. Corsi, W.T. Gross, L. Janssen, R. Santo, K. Tardy, A. Teton. 2015b. Idaho supplementation studies project completion report 1991-2014. Completion report to the U.S. Department of Energy, Bonneville Power Administration. Contract numbers (IDFG) 67577, (NPT) 67566, (SBT) 67980. Project number 1989-098-00. Idaho Department of Fish and Game Report 15-18, Boise.
- Volkhardt, G.C., S.L. Johnson, B.A. Miller, T.E. Nickelson, and D.E. Seiler. 2007. Rotary screw traps and inclined plane screen traps. Pages 235-266 in D.H. Johnson, B.M. Shrier, J.S. O'Neal, J.A. Knutzen, X. Augerot, T.A. O'Neil, and T.N. Pearsons. Salmonid field protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, Maryland.
- Walters, A.W., T. Copeland, and D.A. Venditti. 2013. The density dilemma: limitations on juvenile production in threatened salmon populations. Ecology of Freshwater Fish 22: 508-519.
- Westhagen P., and J. Skalski. 2009. Program PitPro 4: PIT-Tag Processor. Supported by the Bonneville Power Administration. Project No. 1989-107-00, Contract Number 29651. Portland, Oregon. <u>http://www.cbr.washington.edu/analysis/apps/pitpro</u>.

Wright, K.K., W. Schrader, L. Reinhardt, K. Hernandez, C. Hohman, and T. Copeland. 2015. Process and methods for assigning ages to anadromous salmonids from scale samples. Idaho Department of Fish and Game Report 15-03. TABLES

Table 1.Major population groups and independent populations within the spring-summer
Chinook Salmon evolutionary significant unit (ESU) and Snake River steelhead
distinct population segment (DPS; ICTRT 2003, 2005; NMFS 2011).

Snake River	spring-summer Chinook Salmon ESU
Major population group	Population name
Lower Spoke Diver	1. Tucannon River
Lower Snake River	2. Asotin Creek (extirpated) ^a
	3. Wenaha River
	4. Lostine River
	5. Minam River
Oren de Den de llas nels e Divers	6. Catherine Creek
Grande Ronde/Imnaha Rivers	7. Upper Grande Ronde River
	8. Imnaha River
	9. Big Sheep Creek (extirpated) ^a
	10. Lookinglass Creek (extirpated) ^a
	11. Little Salmon River
	12. South Fork Salmon River Mainstem
South Fork Salmon River	13. Secesh River
	14. East Fork South Fork Salmon River
	15. Chamberlain Creek
	16. Middle Fork Salmon River below Indian Creek
	17. Big Creek
	18. Camas Creek
Middle Fork Salmon River	19. Loon Creek
	20. Middle Fork Salmon River above and including Indian Creek
	21. Sulphur Creek
	22. Bear Valley Creek
	23. Marsh Creek
	24. Panther Creek (extirpated) ^a
	25. North Fork Salmon River
	26. Lemhi River
	27. Salmon River Lower Mainstem below Redfish Lake
Upper Salmon River	28. Pahsimeroi River
	29. East Fork Salmon River
	30. Yankee Fork Salmon River
	31. Valley Creek
	32. Salmon River Upper Mainstem above Redfish Lake
	33. Potlatch River (extirpated)
Dry Cleanwater Diver (autimated)	34. Lapwai Creek (extirpated)
Dry Clearwater River (extirpated) ^a	35. Lawyer Creek (extirpated)
	36. Upper South Fork Clearwater River (extirpated) a
	37. Lower North Fork Clearwater River (extirpated)
	38. Upper North Fork Clearwater River (extirpated)
	39. Lolo Creek (extirpated) ^a
Wet Clearwater River (extirpated) ^a	40. Lochsa River (extirpated) ^a
	41. Meadow Creek (extirpated) ^a
	42. Moose Creek (extirpated) ^a
	43. Upper Selway River (extirpated) ^a

Table 1. Continued.

Snake River Steelhead DPS							
Major population group	Population name						
Lower Snake River	1. Tucannon River						
	2. Asotin Creek						
	3. Lower Grande Ronde River						
Grande Ronde River	4. Joseph Creek						
Grande Konde Kiver	5. Wallowa River						
	6. Upper Grande Ronde River						
Imnaha River	7. Imnaha River						
	8. Lower Clearwater River						
	9. North Fork Clearwater River (extirpated)						
Clearwater River	10. Lolo Creek						
	11. Lochsa River						
	12. Selway River						
	13. South Fork Clearwater River						
	14. Little Salmon River						
	15. Chamberlain Creek						
	16. South Fork Salmon River						
	17. Secesh River						
	18. Panther Creek						
Salmon River	19. Lower Middle Fork Salmon River						
Gamon River	20. Upper Middle Fork Salmon River						
	21. North Fork Salmon River						
	22. Lemhi River						
	23. Pahsimeroi River						
	24. East Fork Salmon River						
	25. Upper Salmon River						
Hells Canyon Tributaries (extirpated) ^a	NA						

^a Reintroduced fish exist in extirpated areas.

Table 2.Trap catch and emigrant abundance estimates for juvenile Chinook Salmon by
season and age from rotary screw traps (RST) operated in the Salmon River and
Clearwater River basins, Idaho during calendar year 2022. Instances where no
estimate was made are noted NA.

South Fork Salmon River Rept RP Spring age-0 0 NA NA RPDTRP Spring age-0 0 NA NA Fall age-0 97 NA NA Fall age-0 97 NA NA Icouer South Fork Salmon River SrSRKT Spring age-0 27 NA NA Lower South Fork Salmon River SrSRKT Spring age-0 27 NA NA Middle Fork Salmon River Big Creek Spring age-0 27 NA NA Middle Fork Salmon River Summer age-0 2.184 33.152 26.340 43 Fall age-0 11.732 93.099 83.972 104 Total 15.362 137.104 101.86 18 BIG2CT Spring age-0 2 NA NA Summer age-0 3.187 30.186 27.063 33 Total 4.311 49.312 104.9312 104.9312 104.9312 104.9312 Upper Salmon River NPSTRP Spring age-0 36 NA NA NA Noth Fork Salmon River Sp	Major Population Group, RST location and PTAGIS code	Season and age	Trap catch	Point estimate	Lower 95% Cl	Upper 95% Cl
RPDTRP Spring age-0 0 NA NA Fall age-0 17 NA NA Total 116 NA NA Lower South Fork Salmon River Spring age-0 27 NA NA SFSRKT Spring age-0 27 NA NA Middle Fork Salmon River Summer age-0 2184 33,152 26,340 43 Fall age-0 11,732 93,099 83,972 104 Middle Fork Salmon River Summer age-0 2 NA NA BilG2CT Spring age-0 2 NA NA BilG2CT Spring age-0 3.187 3.391 10,186 18 BIG2CT Spring age-0 3.187 3.01,86 27,063 33 Total 4,311 49,312 4 30,434 70,413 95 Juper Salmon River NFSTRP Spring age-1 363 2,492 1,874 4 NFSTRP Spring age-0 36 NA						
RPDTRP Spring age-0 Fall age-0 0 97 NA NA Total 116 NA NA Lower South Fork Salmon River Spring age-0 27 NA NA SFSRKT Spring age-0 27 NA NA Middle Fork Salmon River Summer age-0 2184 33,152 26,340 43 Fall age-0 11,732 93,099 83,972 104 Middle Fork Salmon River Summer age-0 2 NA NA Bil G2CT Spring age-0 2 NA NA Summer age-0 3.73 5.787 3.927 9 Fall age-0 3.187 30.186 27,063 33 Total 4.311 49,312 4 33,722 9 Lower Marsh Creek Spring age-1 353 2,655 2,106 3 MARTR2 Spring age-1 353 2,655 2,106 3 Marge-0 7.79 4,607 3,593 6	Rapid River	Spring age-1	2	NA	NA	NA
Summerage-0 17 NA NA Total 116 NA NA Lower South Fork Salmon River SFSRKT Spring age-1 1,419 10,854 9,135 13 SFSRKT Spring age-0 2,7 NA NA NA Middle Fork Salmon River Summer age-0 2,184 33,152 26,340 43 Middle Fork Salmon River Fall age-0 11,732 93,099 83,972 104 Middle Fork Salmon River Big Creek Spring age-0 2 NA NA Big Creek Spring age-0 137,704 13,339 10,186 18 Big Creek Spring age-0 3,187 30,186 27,063 33 Total 4,311 49,312 104 106,619 106,619 Upper Salmon River Spring age-0 131 NA NA NSTRP Spring age-0 383 4,992 1,874 4 NFSTRP Spring age-0 383 4,992 3,256 9 </td <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td>NA</td>				NA		NA
Fall age-0 97 NA NA Total 116 NA NA Intervention of the second s				NA		NA
Total 116 NA NA Lower South Fork Salmon River SFSRKT Spring age-0 27 NA NA Summer age-0 27 NA NA Summer age-0 2184 33.152 26.340 43 Fall age-0 11.732 93.099 83.972 104 Middle Fork Salmon River Big Creek Spring age-0 2 NA NA BIG2CT Spring age-0 2 NA NA NA Summer age-0 3.787 3.927 9 Fall age-0 3.187 30.186 27.063 33 Total 4.311 49.312 Lower Marsh Creek Spring age-0 111 NA NA NA MARTR2 Spring age-0 3.11 NA NA Summer age-0 5.471 80.434 70.413 95 Fall age-0 3.756 23.530 21.642 26 Total 9.691 106.619 Upper Salmon River Summer age-0 5 10 5<		9				NA
SFSRKT Spring age-0 27 NA NA Summer age-0 2,184 33,152 26,340 43 Middle Fork Salmon River Total 15,362 137,104 104 Middle Fork Salmon River Big Creek Spring age-0 2 NA NA Big Creek Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 104 NA NA Lower Marsh Creek Spring age-1 353 2,655 2,106 3 3 104,431 49,312 104,431 96 104,42 26 104,431 104,431 104,431 105 104 104,42 26 104,431 104,431 104,431 105 104 104,42 26 104,43 104,431 104,333 10,442 26 104,43 104,43 104,433 104,433 104,433 104,433 104			116	NA	NA	NA
SFSRKT Spring age-0 27 NA NA Summer age-0 2,184 33,152 26,340 43 Middle Fork Salmon River Total 15,362 137,104 104 Middle Fork Salmon River Big Creek Spring age-0 2 NA NA Big Creek Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 104 105,027 9 Lower Marsh Creek Spring age-1 353 2,655 2,106 3 3 104,434 70,413 95 MARTR2 Spring age-0 111 NA NA NA Summer age-0 5 10 5 144 26 Total 9,691 106,619 105 10 5 5 16 10 5 144 14 15 144 14 16,619 10 <td< td=""><td>Lower South Fork Salmon River</td><td>Spring age-1</td><td>1 419</td><td>10 854</td><td>9 135</td><td>13,369</td></td<>	Lower South Fork Salmon River	Spring age-1	1 419	10 854	9 135	13,369
Summer age-0 2,184 33,152 26,340 43 Middle Fork Salmon River Big Creek Spring age-1 749 13,339 10,186 18 Big Creek Spring age-0 2 NA NA NA Big Creek Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fail age-0 3,187 30,186 27,063 33 Total 4,311 49,312		1 0 0	,			NA
Fail age-0 11,732 93,099 83,972 104 Total 15,362 137,104 104 Middle Fork Salmon River Spring age-0 2 NA NA BIG2CT Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fail age-0 3,187 30,186 27,063 33 Total 4,311 49,312 49,312 Lower Marsh Creek Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fail age-0 3,766 23,530 21,642 26 Total 9,691 106,619 9 Upper Salmon River Spring age-0 36 NA NA NFSTRP Spring age-0 36 NA NA Summer age-0 5 10 5 5 Fail age-0 779 4,607 3,953 6 Total 1,101	SI ORRI					43,700
Total 15,362 137,104 Bid Cresk Spring age-0 2 NA NA BIG2CT Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 49,312 10,148 Lower Marsh Creek Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,766 23,530 21,642 26 Total 9,691 106,619 106,619 106,619 Upper Salmon River Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 10 5 Upper Lemhi River Spring age-1 1,080 5,447 4,858 6 LEMTRP Spring age-0 383 4,992 3,256						104,452
Middle Fork Salmon River Big Creek Spring age-1 749 13,339 10,186 18 BIG2CT Spring age-0 2 NA NA NA Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 49 33 Lower Marsh Creek Spring age-1 353 2,655 2,106 3 MARTR2 Spring age-0 111 NA NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619 9 Upper Salmon River Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 1 1 1 1 Upper Lemhi River Spring age-1 1,080 5,447					03,972	104,452
Big Creek Spring age-1 749 13,339 10,186 18 BIG2CT Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 3 3 Lower Marsh Creek Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619 3 3 Upper Salmon River North Fork Salmon River Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA S Summer age-0 5 10 5 5 61 Lower Lemhi River Spring age-1 1,080 5,447 4,858 6 LEMTRP Spring age-0 383	Middle Fork Salmon River	Total	15,302	137,104		
BIG2CT Spring age-0 2 NA NA Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 33 33 Lower Marsh Creek Spring age-0 111 NA NA MARTR2 Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619		Spring age-1	749	13 339	10 186	18,675
Summer age-0 373 5,787 3,927 9 Fall age-0 3,187 30,186 27,063 33 Total 4,311 49,312 33 Lower Marsh Creek Spring age-1 353 2,655 2,106 3 MARTR2 Spring age-0 111 NA NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619 106,619 106,619 Upper Salmon River Spring age-0 36 NA NA NFSTRP Spring age-0 36 NA NA Summer age-0 5 10 5 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 13 13 13 Upper Lemhi River Spring age-0 383 4,992 3,256 9 Summer age-0 19						NA
Fail age-0 3,187 30,186 27,063 33 Total 4,311 49,312 Lower Marsh Creek Spring age-0 111 NA NA MARTR2 Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fail age-0 3,756 23,530 21,642 26 Total 9,691 106,619 106,619 Upper Salmon River North Fork Salmon River Spring age-0 36 NA NA Summer age-0 5 10 5 5 Fail age-0 779 4,607 3,953 6 Total 1,101 7,109 10 5 Upper Lemhi River Spring age-1 1,080 5,447 4,858 6 LEMTRP Spring age-0 383 4,992 3,256 9 Summer age-0 19 127 63 63 5 Fail age-0 4,611	516201		_			9,996
Total 4,311 49,312 Lower Marsh Creek Spring age-1 353 2,655 2,106 3 MARTR2 Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619 9 Upper Salmon River North Fork Salmon River Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 127 63 Upper Lemhi River Spring age-1 1,080 5,447 4,858 6 LEMTRP Spring age-0 333 2,479 1,907 3 Hayden Creek Spring age-0 333 2,479 1,907 3 Su				,		33,855
Lower Marsh Creek Spring age-1 353 2,655 2,106 3 MARTR2 Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619 Upper Salmon River North Fork Salmon River NFSTRP Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Fall age-0 383 4,992 3,256 9 Summer age-0 19 127 63 Fall age-0 4,611 13,137 12,580 13 Total 6,093 23,703 Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 1 NA NA Fall age-0 NA NA NA Fall age-0 NA NA NA Fall age-0 NA NA NA Fall age-0 1 NA NA Fall age-0 770 12,750 9,533 22					21,000	00,000
MARTR2 Spring age-0 111 NA NA Summer age-0 5,471 80,434 70,413 95 Fail age-0 3,756 23,530 21,642 26 Total 9,691 106,619 Upper Salmon River Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA Summer age-0 5 10 5 Fail age-0 779 4,607 3,953 6 Total 1,101 7,109 5 10 5 Upper Lemhi River Spring age-1 1,080 5,447 4,858 6 LEMTRP Spring age-0 383 4,992 3,256 9 Summer age-0 19 127 63 6 Fail age-0 4,611 13,137 12,580 13 Total 6,093 23,703 14 14,907 3 Summer age-0 <			4,011	40,012		
Summer age-0 5,471 80,434 70,413 95 Fall age-0 3,756 23,530 21,642 26 Total 9,691 106,619 70	Lower Marsh Creek	Spring age-1	353	2,655	2,106	3,592
Fail age-0 3,756 23,530 21,642 26 Total 9,691 106,619 700	MARTR2	Spring age-0	111		NA	NA
Total 9,691 106,619 Upper Salmon River North Fork Salmon River NFSTRP Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA Source 10 5 Fall age-0 779 4,607 3,953 6 10 5 Total 1,101 7,109 10 5 10 5 Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Summer age-0 19 127 63 13 127,56 9 Summer age-0 19 127 63 13 12,580 13 Total 6,093 23,703 13 12,580 13 Hayden Creek Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA NA NA Hayden Creek Spring age-0 1 NA NA NA NA		Summer age-0	5,471	80,434	70,413	95,759
Upper Salmon River Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 Upper Lemhi River Spring age-1 1,080 5,447 4,858 6 Spring age-0 383 4,992 3,256 9 9 Summer age-0 19 127 63 13 Total 6,093 23,703 Hayden Creek Spring age-1 50 127 94 94 14377 12,580 13 Hayden Creek Spring age-0 333 2,479 1,907 3 Hayden Creek Spring age-0 1 NA NA HAYTRP Spring age-0 1 NA NA Fall age-0 NA NA NA NA Lower Lemhi River Spring age-1 1,120 18,641 15		Fall age-0	3,756	23,530	21,642	26,839
North Fork Salmon River NFSTRP Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA NA Summer age-0 5 10 5 5 10 5 Fall age-0 779 4,607 3,953 6 6 Total 1,101 7,109 7 7 4,858 6 Upper Lemhi River Spring age-0 383 4,992 3,256 9 Summer age-0 19 127 63 6 1 13,137 12,580 13 Total 6,093 23,703 1 1 1,907 3 Hayden Creek Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA NA HAYTRP Spring age-0 1 NA NA NA Fall age-0 NA NA NA NA NA Fall age-0 NA		Total	9,691	106,619		
North Fork Salmon River NFSTRP Spring age-1 281 2,492 1,874 4 NFSTRP Spring age-0 36 NA NA NA Summer age-0 5 10 5 5 10 5 Fall age-0 779 4,607 3,953 6 6 Total 1,101 7,109 7 7 4,858 6 Upper Lemhi River Spring age-0 383 4,992 3,256 9 Summer age-0 19 127 63 6 1 13,137 12,580 13 Total 6,093 23,703 1 1 1,907 3 Hayden Creek Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA NA HAYTRP Spring age-0 1 NA NA NA Fall age-0 NA NA NA NA NA Fall age-0 2	Unner Selmen Biver					
NFSTRP Spring age-0 Summer age-0 36 NA NA Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 719 4,607 3,953 6 Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Summer age-0 19 127 63 13 127 63 Fall age-0 4,611 13,137 12,580 13 13 12,580 13 Total 6,093 23,703 1007 3 3 14,907 3 Hayden Creek Spring age-1 50 127 94 1907 3 HAYTRP Spring age-0 1 NA NA NA Fall age-0 NA NA NA NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 LLRTP Spring age-0 2		Spring ago 1	201	2 402	1 07/	4,970
Summer age-0 5 10 5 Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 7109 Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Summer age-0 383 4,992 3,256 9 9 3 3 4,992 3,256 9 Summer age-0 19 127 63 6 6 3 7 7 63 13 7 12,580 13 7 12,580 13 7 12,580 13 7 12,580 13 7 13,137 12,580 13 7 13,137 12,580 13 7 14 6,093 23,703 7 1,907 3 3 3,479 1,907 3 3 1,907 3 3 3,479 1,907 3 3 3 1,907 3 3 3,479 1,907 3 3 3 1,00 <td></td> <td></td> <td></td> <td>,</td> <td>•</td> <td>4,970 NA</td>				,	•	4,970 NA
Fall age-0 779 4,607 3,953 6 Total 1,101 7,109 7109 7109 7109 7109 Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Spring age-0 383 4,992 3,256 9 9 9 127 63 701 12,580 13 702 13 703	NFOIRF					20
Total 1,101 7,109 Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Spring age-0 383 4,992 3,256 9 Summer age-0 19 127 63 Fall age-0 4,611 13,137 12,580 13 Total 6,093 23,703 12 13 Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Total 384 2,606 24 Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 LLRTP Spring age-0 2 NA NA NA Summer age-0 1 NA NA NA NA Age-0 770 12,750 9,533 22 <				-	-	-
Upper Lemhi River LEMTRP Spring age-1 1,080 5,447 4,858 6 Summer age-0 383 4,992 3,256 9 Summer age-0 19 127 63 Fall age-0 4,611 13,137 12,580 13 Total 6,093 23,703 100 100 100 Hayden Creek Spring age-1 50 127 94 100					3,903	6,489
LEMTRP Spring age-0 383 4,992 3,256 9 Summer age-0 19 127 63 Fall age-0 4,611 13,137 12,580 13 Total 6,093 23,703 13 Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 LLRTP Spring age-0 2 NA NA NA Summer age-0 1 NA NA NA NA Lage-0 2 NA NA NA NA NA			1,101	1,100		
Summer age-0 19 127 63 Fall age-0 4,611 13,137 12,580 13 Total 6,093 23,703 12 13 Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Fall age-0 NA NA NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Spring age-0 2 NA NA NA NA NA LLRTP Spring age-0 2 NA Spring age-0 1 NA NA NA Spring age-0 1 NA NA NA Spring age-0 1 NA NA Spring age-0 1			1,080			6,199
Fall age-0 4,611 13,137 12,580 13 Total 6,093 23,703 12,580 13 Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Total 384 2,606 24 Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Summer age-0 2 NA NA NA NA NA LLRTP Spring age-0 2 NA NA NA NA NA NA NA NA NA Summer age-0 1 NA NA NA Summer age-0 1 NA NA Summer age-0 1 NA Summer age-0 1 Summer age-0 1 Summer age-0 1 Summer age-0 1 Summer age-0 Suma	LEMTRP	Spring age-0	383	4,992	3,256	9,360
Total 6,093 23,703 Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Spring age-0 2 NA NA NA NA NA NA NA NA 24 24 24 24 2606 24 24 24 24 2606 24 24 24 24 24 2606 24 24 24 24 26 24 24 24 26 26 24 24 24 24 26 26 26 24 26 26 26 26 26 26 26 26 26 26 26 26 26 24 26 26		Summer age-0	19			380
Hayden Creek Spring age-1 50 127 94 HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Spring age-0 2 NA NA NA NA NA 24 LLRTP Spring age-0 1 NA NA 24 2606 24 24 24 2606 24 26 26 24 26 24 26 24 26 24 26 24 24 26 26 24 26 26 26 24 26		Fall age-0	4,611		12,580	13,716
HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Total 384 2,606 2 NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Summer age-0 2 NA NA Fall age-0 1 NA NA LLRTP Spring age-0 2 NA NA Fall age-0 770 12,750 9,533 22		Total	6,093	23,703		
HAYTRP Spring age-0 333 2,479 1,907 3 Summer age-0 1 NA NA NA Fall age-0 NA NA NA NA Total 384 2,606 2 NA NA Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Summer age-0 2 NA NA Fall age-0 1 NA NA LLRTP Spring age-0 2 NA NA Fall age-0 770 12,750 9,533 22	Haudan Crack	Spring ago_1	50	107	04	196
Summer age-0 1 NA NA Fall age-0 NA NA NA Total 384 2,606 Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 Spring age-0 2 NA NA NA Summer age-0 1 NA NA Fall age-0 770 12,750 9,533 22						3,420
Fall age-0 NA NA NA Total 384 2,606 Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 LLRTP Spring age-0 2 NA NA Summer age-0 1 NA NA Fall age-0 770 12,750 9,533 22	DATIKE					3,420 NA
Total 384 2,606 Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 LLRTP Spring age-0 2 NA NA Summer age-0 1 NA NA Fall age-0 770 12,750 9,533 22						NA
Lower Lemhi River Spring age-1 1,120 18,641 15,009 24 LLRTP Spring age-0 2 NA NA Summer age-0 1 NA NA Fall age-0 770 12,750 9,533 22					INA	INA.
LLRTP Spring age-0 2 NA NA Summer age-0 1 NA NA Fall age-0 770 12,750 9,533 22				_,		
Summer age-0 1 NA NA Fall age-0 770 12,750 9,533 22			1,120	,		24,091
Fall age-0 770 12,750 9,533 22	LLRTP		2			NA
						NA
Total 1 802 21 201					9,533	22,809
		Total	1,893	31,391		

Table 2. Continued.

Major Population Group, RST location and PTAGIS code	Season and age	Trap catch	Point estimate	Lower 95% Cl	Upper 95% CI
Upper Salmon River		726	4,186	3,588	5,141
	Spring age-0	850	4,255	2,128	8,510
	Summer age-0	2,020	23,023	20,095	27,451
	Fall age-0	796	5,897	4,936	7,816
	Total	4,392	37,362		
Pahsimeroi River	Spring age-1	155	2,164	1,404	5,668
	Spring age-0	225	5,928	4,966	9,991
	Summer age-0	38	NA	NA	NA
	Fall age-0	452	4,812	4,006	8,919
	Total	870	12,903	,	- ,
Dry Clearwater River			,		
Crooked River	Spring age-1	84	663	414	1,326
	Spring age-0	0	NA	NA	NA
	Summer age-0	549	NA	NA	NA
	Fall age-0	27	NA	NA	NA
	Total	660	663		
Big Bear Creek	Spring age-1	0	NA	NA	NA
	Spring age-0	0 0	NA	NA	NA
	Summer age-0	0	NA	NA	NA
	Fall age-0	0	NA	NA	NA
	Total	0	NA	NA	NA
East Fork Potlatch	Spring age-1	0	NA	NA	NA
	Spring age-0	0 0	NA	NA	NA
2.1.1.0	Summer age-0	0 0	NA	NA	NA
	Fall age-0	0	NA	NA	NA
	Total	0	NA	NA	NA
Wet Clearwater River					
	Spring age-1	0	NA	NA	NA
	Spring age-0	0	NA	NA	NA
110110	Summer age-0	0	NA	NA	NA
	Fall age-0	0	NA	NA	NA
	Total	0	NA NA	NA	NA
		445	4.004	0.405	40.000
Lower Lochsa River		115	4,331	2,165	12,992
LOCIRP	Spring age-0	0	NA	NA	NA
	Summer age-0	9	NA	NA	NA
	Fall age-0	21	199	100	399
	Total	145	4,530		

Table 3.Estimated abundance of emigrants at each rotary screw trap (RST), survival to
Lower Granite Dam (LGR), and estimated smolt abundance at LGR for brood year
2020 wild juvenile Chinook Salmon from the Salmon River and Clearwater River
basins, Idaho. Instances where no estimate was made are noted NA.

Major Population Group,		Emigrant	Number PIT		Smolt
RST location and PTAGIS	Season and	abundance	tagged at	Survival rate to	abundance
code	age	at RST	RST	LGR (SE)	to LGR
South Fork Salmon River					
Lower South Fork	Spring age-0	9,419	326	0.276 (0.070)	2,600
Salmon River	Summer age-0	9,611	453	0.428 (0.138)	4,115
SFSRKT	Fall age-0	40,480	3,430	0.338 (0.023)	13,682
	Spring age-1	10,854	1,211	0.609 (0.044)	6,610
	BY Total	70,364	5,420	0.384	27,007
Middle Fork Salmon River					
Big Creek	Spring age-0	NA	5	NA	NA
BIGC2T	Summer age-0	4,588	213	0.381 (0.077)	1,749
DIGCZT	Fall age-0	37,618	1,637	0.432 (0.037)	16,232
	Spring age-1	13,339	747	0.655 (0.073)	8,737
	BY Total	55,545	2,602	0.000 (0.070)	26,718
		,	_,		
Lower Marsh Creek	Spring age-0	24,634	15	NA	NA
MARTR2	Summer age-0	70,382	1,049	0.288 (0.043)	20,270
	Fall age-0	59,176	6,633	0.349 (0.019)	20,652
	Spring age-1	2,655	345	0.506 (0.068)	1,343
	BY Total	156,847	8,042	0.320	42,266
Upper Salmon River					
North Fork Salmon River	Spring age-0	NA	NA	NA	NA
NFSTRP	Summer age-0	1,657	149	0.085 (0.024)	141
	Fall age-0	22,216	1,344	0.417 (0.050)	9,264
	Spring age-1	2,492	301	0.540 (0.135)	1,346
	BY Total	26,365	1,794	0.408	10,751
Lemhi River weir	Spring ago 0	1 225	2	NA	NA
LEMTRP	Spring age-0 Summer age-0	1,325 224	36	0.111 (0.076)	25
LEIVITRE	Fall age-0	10,676		0.322 (0.025)	3,438
		5,447	2,440 1,079	0.636 (0.066)	3,430 3,464
	Spring age-1 BY Total	17,672	3,557	0.030 (0.000)	<u> </u>
	Briotai	17,072	5,557	0.424	0,521
Hayden Creek	Spring age-0	20,902	2	NA	NA
	Summer age-0	638	140	0.293 (0.238)	187
	Fall age-0	548	173	0.435 (0.131)	238
	Spring age-1	127	49	ŇÁ	NA
	BY Total	22,215	364	0.324	425
Lower Lemhi River	Spring age-0	345	2	NA	NA
	Summer age-0	62	28	NA	NA
EEIXII	Fall age-0	13,401	1,182	0.392 (0.039)	5,253
	Spring age-1	18,641	1,043	0.775 (0.076)	14,447
	BY Total	32,448	2,255	0.614	19,700
					·
Upper Salmon River	Spring age-0	4,195	50	NA	NA
SAWTRP	Summer age-0	4,740	310	0.119 (0.095)	564
	Fall age-0	3,797	607	0.257 (0.060)	974
	Spring age-1	4,186	717	0.421 (0.049)	1,762
	BY Total	16,918	1,684	0.259	3,300

Table 3. Continued.

Major Population Group, RST location and PTAGIS code	Season and age	Emigrant abundance at RST	Number PIT tagged at RST	Survival rate to LGR (SE)	Smolt abundance to LGR
Pahsimeroi River	Spring age-0	5,213	814	0.338 (0.055)	1,762
PAHTRP	Summer age-0	3,759	309	0.261 (0.146)	981
	Fall age-0	15,700	2,053	0.253 (0.028)	3,972
	Spring age-1	2,164	153	0.747 (0.147)	1,616
	BY Total	24,672	3,329	0.338	8,332
Dry Clearwater River					
Crooked River	Spring age-0	NA	NA	NA	NA
CROTRP	Summer age-0	NA	NA	NA	NA
	Fall age-0	320	87	NA	NA
	Spring age-1	663	78	NA	NA
	BY Total	983	165	NA	NA

Estimated adult-to-juvenile productivity of wild juvenile Chinook Salmon for brood Table 4. year 2020, expressed as both emigrants at rotary screw trap per female spawner and smolts at Lower Granite Dam (LGR) per female spawner. Instances where no estimates were made are noted NE.

Major Population Group and trap location, and PTAGIS site code	Female adults	Emigrants at trap	Emigrants /female	Smolts to LGR	Smolts at LGR / female
		Salmon River	Basin		
South Fork Salmon River					
Rapid River RPDTRP	NE	NE	NE	NE	NE
Lower South Fork Salmon River SFSRKT	72 ^{(a)(c)}	70,364	977	27,007	375
Middle Fork Salmon River					
Big Creek					
BIG2CT	32 ^(a)	55,545	1,736	26,718	835
Lower Marsh Creek MARTR2	177 ^(b)	156,847	747	42,266	239
Upper Salmon River					
North Fork Salmon River NFSTRP	19 ^(a)	26,365	1,388	10,751	576
Lemhi River (upper) LEMTRP	88 ^(b)	17,672	201	6,927	79
Hayden Creek HYDTRP	33 ^(a)	22,215	673	425	13
Lower Lemhi River LLRTP	121 ^{(a)(b)}	32,448	268	19,700	163
Upper Salmon River SAWTRP	31 ^(c)	16,918	546	3,300	106
Pahsimeroi River PAHTRP	61 ^(c)	26,836	440	8,332	137
Dry Clearwater River		Clearwater Riv	er Basin		
Crooked River					
a Data source: IDFG index (sing	0	NE	NE	NE	NE

Data source: IDFG index (single pass) redd survey. b

Data source: Census (multi-pass) redd surveys. с

Data source: Females passed upstream from weir.

Table 5.Parameter estimates for wild Chinook Salmon Beverton-Holt stock recruit curves.
"Recruits" are represented by smolts at Lower Granite Dam, and "stock" are wild
redds above traps or female spawners above traps estimated using mark-
recapture techniques. Alpha/beta is the estimated asymptote.

Major population group, trap location, and PTAGIS code	Brood years in analysis	α	β	α/β
Middle Fork Salmon River				
Big Creek	2006-2020	572.1	0.005	114,637
BIG2CT				
Lower Marsh Creek	2009-2020	277.6	0.001	292,815
MARTR2				
Upper Salmon River				
Upper Lemhi River	1991-2020	114.9	0.002	52,928
LEMTRP				
Pahsimeroi River	1992-2020	169.7	0.006	27,417
PAHTRP				
Upper Salmon River	1992-1994, 1996-2020	177.3	0.003	59,971
SAWTRTP				
Lower Lemhi Trap	2017-2020	274.6	0.003	100,335
LLTRP				

Table 6.Rotary screw trap catch and emigrant abundance estimates, with 95% confidence
intervals (CI) for wild juvenile steelhead >80 mm FL, by season during 2022.
Instances where no estimate was made are noted NE.

Population, trap location and	•		Emigration	Lower	Upper 95%
PTAGIS site code	Season	Catch	estimate	95% CI	CI
	Salmon F	River Basin			
Little Salmon River	Coring	222	2.062	1 500	2 200
Rapid River	Spring Sum/Fall	222 165	2,063	1,500 830	3,300
REDIRE	Total	387	1,141 3,204	2,330	1,712 5,012
	TOTAL	307	3,204	2,330	5,012
South Fork Salmon River					
Lower South Fork Salmon River	Sprina	212	1,038	773	1,510
	Sum/Fall	1,028	14,192	11,227	18,805
	Total	1,240	15,231	12,000	20,315
Lower Middle Fork Salmon River					
Big Creek	Spring	50	NA	NA	NA
	Sum/Fall	632	26,573	16,676	66,739
	Total	682	26,573	16,676	66,739
Upper Middle Fork Salmon River					
Lower Marsh Creek	Spring	13	91	46	182
	Sum/Fall	135	1,402	911	2,603
	Total	148	1,493	957	2,785
North Fork Salmon River					
North Fork Salmon River	Spring	210	2,606	1,772	4,430
	Sum/Fall	402	15,996	9,998	31,993
	Total	612	18,603	11,770	36,423
Lemhi River					
Upper Lemhi River	Spring	302	1,082	918	1,317
LEMTRP	Sum/Fall	1,702	14,299	12,503	16,587
	Total	2,004	15,381	13,421	17,905
Hayden Creek	Spring	301	1,596	1,296	2,079
	Sum/Fall	16	127	63	255
	Total	317	1,723	1,359	2,334
Lower Lemhi River	Spring	374	7,677	5,220	13,050
	Sum/Fall	83	3,234	1,617	6,468
	Total	457	10,911	6,837	19,518
Upper Salmon River mainstem					
Upper Salmon River		1,018	10,147	8,456	12,519
SAWTRP	Sum/Fall	167	4,620	2,520	13,860
	Total	1,185	14,767	10,976	26,379
Pahsimeroi River					
Pahsimeroi River	Spring	131	2,809	1,686	6,321
PAHTRP	Sum/Fall	944	11,756	9,734	14,840
	Total	1,075	14,566	11,419	21,161

Table 6. Continued

Population, trap location and			Emigration	Lower	Upper 95%
PTAGIS site code	Season	Catch	estimate	95% CI	CI
	Clearwater	River Basir	ו		
South Fork Clearwater River					
Crooked River	Spring	11	NA	NA	NA
CROTRP	Sum/Fall	125	823	559	1,399
	Total	136	823	559	1,399
Lower Clearwater Mainstem					
Big Bear Creek	Spring	545	3,169	2,674	4,392
BBCTRP	Sum/Fall	NA	NA	NA	NA
	Total	545	3,169	2,674	4,392
East Fork Potlatch River	Spring	101	1,065	639	2,397
EFPTRP	Sum/Fall	NA	NA	NA	NA
	Total	101	1,065	639	2,397
Lochsa River					
Fish Creek	Spring	0	NA	NA	NA
FISTRP	Sum/Fall	1,815	10,827	9,674	12,232
	Total	1,815	10,827	9,674	12,232
Lower Lochsa River		361	29,594	14,797	118,374
LOCTRP	Sum/Fall	63	960	480	3,840
	Total	424	30,554	15,277	122,214

Population, RST location and	Socor	Total	Estimated emigrant abundance by age						Total
PTAGIS site code	Season	aged aged	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	est
Little Salmon River									
Rapid River	Spring	215	0	38	499	1,190	317	19	2,063
RPDTRP	Sum/Fall	159	0	345	689	100	7	0	1,141
South Fork Salmon River									
Lower South Fork Salmon River	Spring	134	0	790	217	31	0	0	1,038
SFSRKT	Sum/Fall	218	0	10,482	3,385	326	0	0	14,192
Lower Middle Fork Salmon River									
Big Creek	Spring ^(b)	47	NA	NA	NA	NA	NA	NA	NA
BIG2CT Upper Middle Fork Salmon River	Sum/Fall	240	0	10,961	14,837	775	0	0	26,573
Lower Marsh Creek	Spring ^(a)	12	0	9	60	24	4	0	91
MARTR2	Sum/Fall	120	0	1,192	199	12	0	0	1,402
North Fork Salmon River									
North Fork Salmon River	Spring ^(b)	144	0	1,303	796	507	0	0	2,606
NFSTRP	Sum/Fall	239	201	10,776	4,217	803	0	0	15,996
Lemhi River		200	201	10,770	7,217	000	0	0	10,000
Upper Lemhi River	Spring	123	0	783	273	26	0	0	1,082
LEMTRP	Sum/Fall	219	0	13,516	718	65	0	0	14,299
		210	0	10,010	110	00	Ũ	Ũ	11,200
Lower Lemhi River	Spring	158	0	340	5,150	1,992	194	0	7,677
LLRTRP	Sum/Fall	44	0	2,058	956	221	0	0	3,234
			-	_,			-	-	-,
Hayden Creek	Spring ^(a)	0	0	366	806	403	12	5	1,596
HYDTRP Upper Salmon River mainstem	Sum/Fall ^(a)	0	27	65	26	7	1	0	127
Upper Salmon River									
SAWTRP	Spring	239	0	6,156	3,439	552	0	0	10,147
Pahsimeroi River	Sum/Fall	156	267	3,998	355	0	0	0	4,620
Pahsimeroi River									
PAHTRP	Spring	128	0	1,997	702	88	22	0	2,809
	Sum/Fall	264	3,874	6,323	1,336	223	0	0	11,756
South Fork Clearwater River									
Crooked River	Spring ^{(a)(b)}	0	NA	NA	NA	NA	NA	NA	NA
CROTRP	Sum/Fall ^(a)	0	0	592	197	26	3	0	823

Table 7.Seasonal age composition estimates of juvenile steelhead >80 mm FL in 2022
from rotary screw traps (RST) operated in the Salmon River and Clearwater River
basins, Idaho.

Table 7. Continued.

Population, RST location and	Season	Total	Estimated emigrant abundance by age						Total
PTAGIS site code	3645011	aged	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	est
Lower Clearwater River Mainstem									
East Fork Potlatch River	Spring	91	0	35	866	164	0	0	1,065
EFPTRP	Sum/Fall ^(a,b)	7	NA	NA	NA	NA	NA	NA	NA
Big Bear Creek	Spring	166	0	57	3,093	19	0	0	3,169
BBCTRP	Sum/Fall ^(a,b)	18	NA	NA	NA	NA	NA	NA	NA
Lochsa River									
Fish Creek	Spring ^{(a)(b)}	0	NA	NA	NA	NA	NA	NA	NA
FISTRP	Sum/Fall	314	34	6,517	4,172	103	0	0	10,827
Lochsa River	Spring	301	0	393	8,750	18,877	1,573	0	29,594
LOCTRP	Sum/Fall	42	23	754	114	46	23	0	960

Age was determined for fewer than 30 fish, thus age proportions are based off average of prior years with greater than 30 fish aged. No abundance estimate due to low catch or recaptures. а

b

Table 8.Season and life stage of Pacific Lamprey captured in rotary screw traps (RST)
operated in the Salmon River and Clearwater River basins, Idaho during calendar
year 2022. Only RST that captured Pacific Lamprey are included.

Major Population Group, RST location and PTAGIS code	Season Life stage		Trap catch	Mean length (mm)	Length range (mm)
South Fork Salmon River					
Lower South Fork Salmon River	Spring*	Ammocoete	2107	137	120-170
SFSRKT		Macrophthalmia	984	146	129-170
	C:::::::::::::::::::::::::::::::::::::	Ammocoete	17	135	114-145
	Summer*	Macrophthalmia	0	NA	NA
	F - 11*	Ammocoete	6	140	124-152
	Fall*	Macrophthalmia	2	142	135-148
	Total				
Wet Clearwater River	Spring*	Ammocoete	101	108	68-140
Lower Lochsa River	Opinig	Macrophthalmia	2	138	135-140
LOCTRP	Summer*	Ammocoete	28	101	74-132
	Summer	Macrophthalmia	0	NA	NA
	F - 11*	Ammocoete	0	NA	NA
	Fall*	Macrophthalmia	0	NA	NA
-	Total				

*Spring = start of trapping-6/30; Summer = 7/1-8/31; Fall = 9/1-end of trapping.

FIGURES

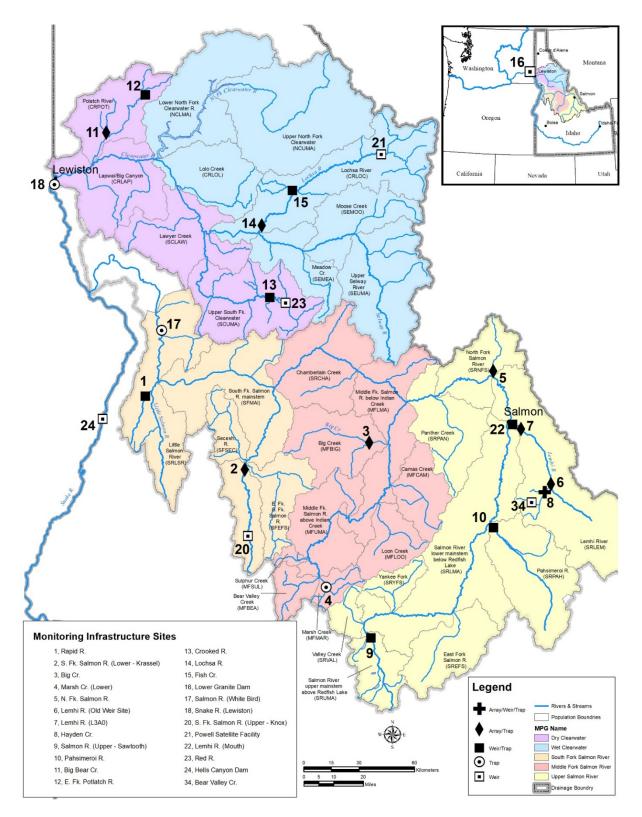


Figure 1. Location of rotary screw traps, weirs, and PIT arrays operated by IDFG in 2022 with reference to spring/summer Chinook Salmon population structure. Numbers correspond to infrastructure sites in the lower left inset. Chinook Salmon major population groups are highlighted and independent populations are delineated.

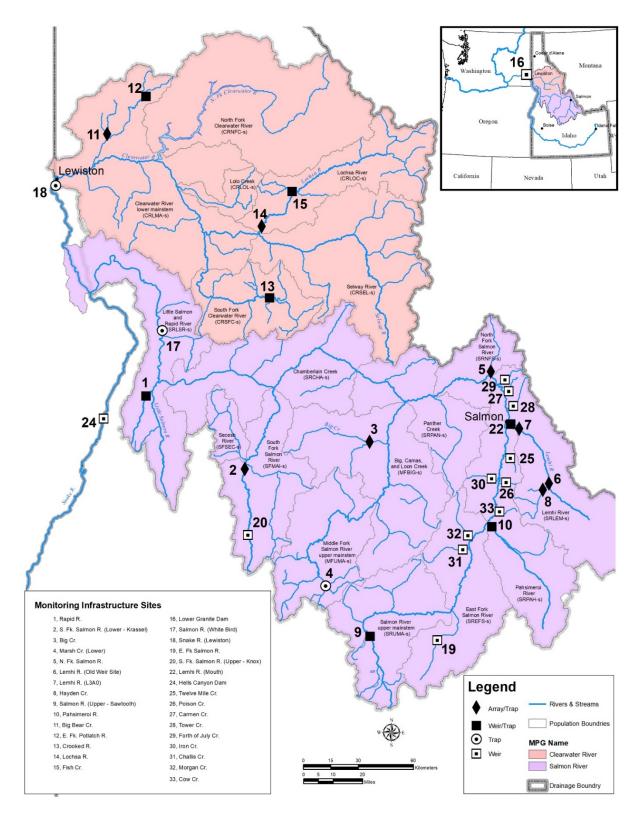


Figure 2. Location of rotary screw traps, weirs, and PIT arrays operated by IDFG in 2022 with reference to steelhead population structure. Numbers correspond to infrastructure sites in the lower left inset. Steelhead major population groups are highlighted and independent populations are delineated.

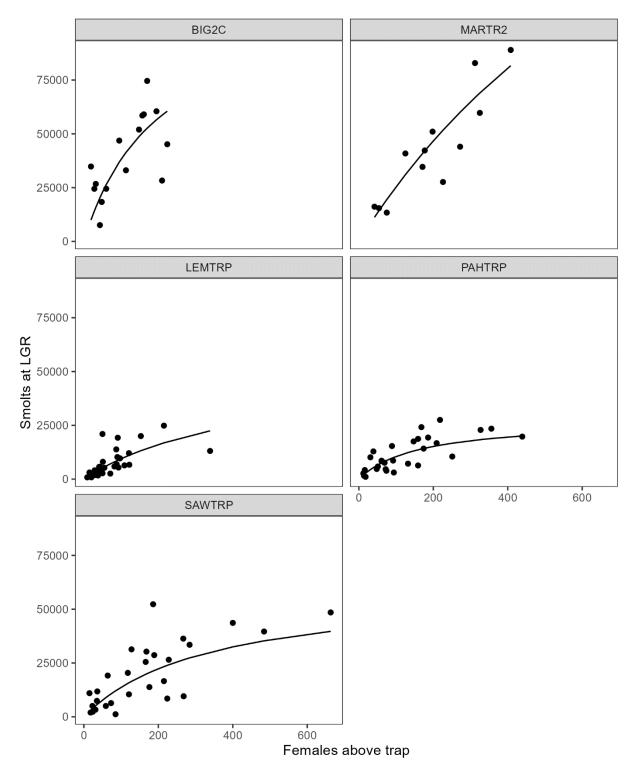


Figure 3. Relationship between wild Chinook Salmon smolts at Lower Granite Dam (LGR) and adult female spawner abundance (all redds above trap) for Chinook Salmon in Big Creek (Brood Years (BY) 2006-2020), and Lower Marsh Creek (BY 2009-2020) in the Middle Fork Salmon major population group (mpg). The Lemhi River (BY 1991-2020), Pahsimeroi and Upper Salmon river (BY 1992-2020) in the Upper Salmon River mpg.

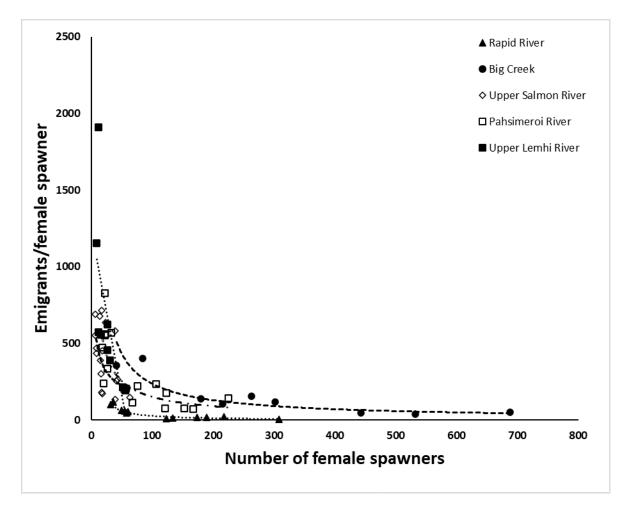


Figure 4. Relationship between wild steelhead emigrant productivity (recruits per spawner expressed as emigrants above the trap/ female spawner above the trap or array) and adult female spawner abundance above the trap or array from Rapid River (Brood Years (BY) 2006-2018), Big Creek (BY 2010-2018), Upper Salmon River (BY 2001-2018), Pahsimeroi River (BY 2001-2018), and Lemhi River (BY 2010-2018). Trend lines fit with a power function are shown for each data set.

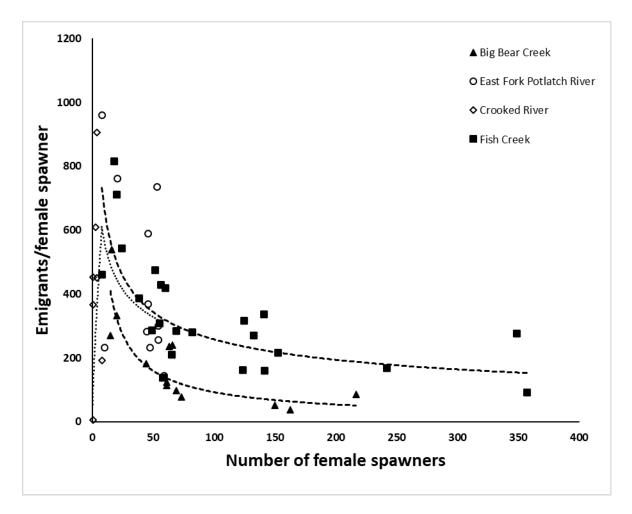


Figure 5. Relationship between wild juvenile steelhead productivity (recruits per spawner expressed as emigrants above the trap/ female spawner) and adult female spawner abundance above the trap or array for steelhead populations from Big Bear Creek (Brood Years (BY) 2005-2018), East Fork Potlatch River (BY 2008-2018), Crooked River (BY 2007-2016), Fish Creek (BY 1996-2018). Trend lines fit with a power function are shown for each data set.

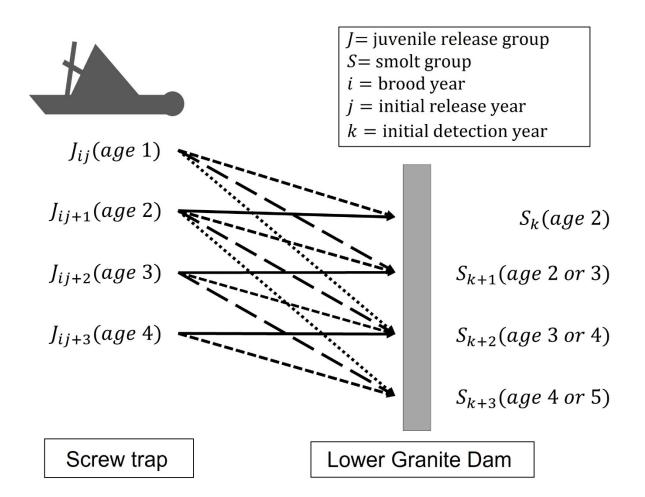


Figure 6. Schematic of migratory pathway possibilities of an example wild juvenile steelhead brood year cohort. Juveniles are tagged and released at rotary screw traps leaving tributary watersheds at a range of ages. Possible pathways to Lower Granite Dam (LGR) include direct migration with no delay (solid lines), overwintering and migrating the following spring (short dashed lines), holding for two winters before ocean migration (long dashed lines), and holding for three winters prior to ocean migration (dotted lines). Total brood year smolt production is the sum of smolt groups that survive to LGR.

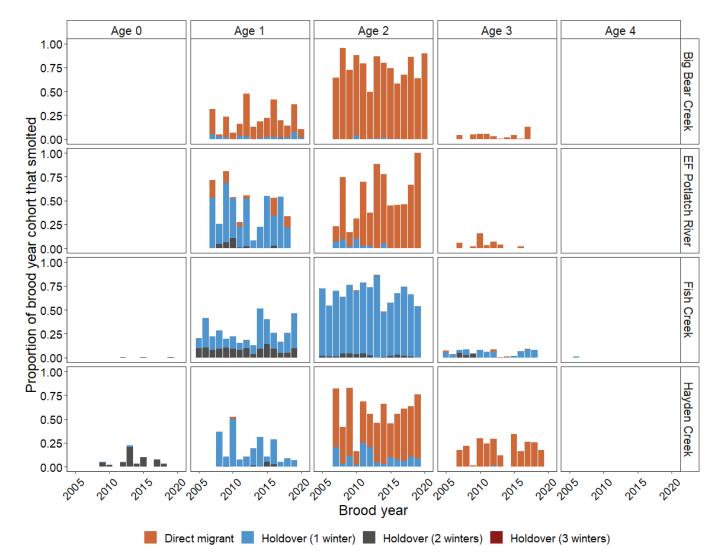
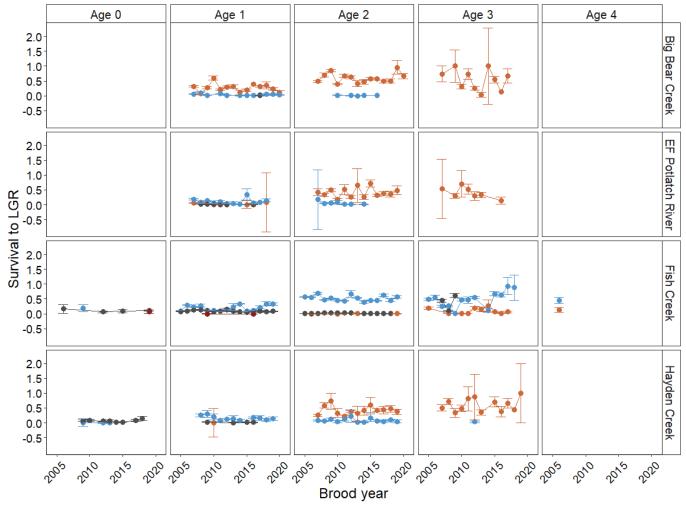



Figure 7. Proportions of brood year cohorts of juvenile steelhead from Big Bear Creek (BY 2007–2020), the East Fork Potlatch River (BY 2007–2019), Fish Creek (BY 2005–2017), and Hayden Creek (BY 2007–2017) that smolted and survived to Lower Granite Dam, partitioned by movement pattern and by age tagged at four rotary screw trap sites.

◆ Direct migrant ◆ Holdover (1 winter) ◆ Holdover (2 winters) ◆ Holdover (3 winters)

Figure 8. Brood year cohort trends in estimated survival of juvenile steelhead with standard error bars to Lower Granite Dam by movement pattern and by age tagged at four rotary screw trap sites. Estimates span brood years 2007–2020 for Big Bear Creek, 2007–2019 for the East Fork Potlatch River, 2005–2019 for Fish Creek, and 2007–2019 for Hayden Creek.

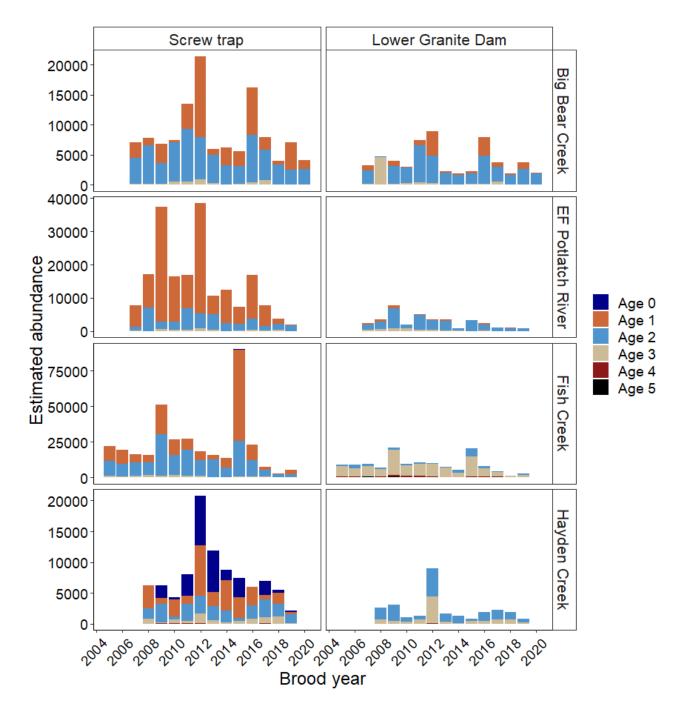


Figure 9. Stacked bars of estimated total brood year cohort abundance of juvenile steelhead by age group at the rotary screw trap of the respective natal tributary watershed and subsequently at Lower Granite Dam. Estimates are presented for fish from Big Bear Creek, EF Potlatch River, Fish Creek, and Hayden Creek.

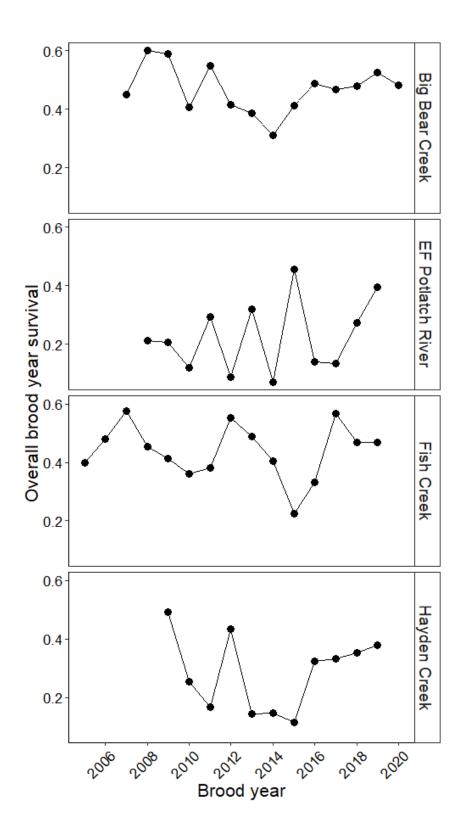


Figure 10. Overall brood year cohort survival of juvenile steelhead from Big Bear Creek, EF Potlatch River, Fish Creek, and Hayden Creek.

APPENDICES

Appendix A. Rotary screw traps operated by Idaho Department of Fish and Game in 2022 to monitor Chinook Salmon and steelhead juvenile emigrants in Idaho. Major population group (MPG) and population for each species are identified. Funding projects include Idaho Salmon and Steelhead Monitoring and Evaluation Studies (ISSMES), and Intensively Monitored Watershed (IMW).

Map reference number	Trap location (PTAGIS code)	Chinook Salmon MPG / population	Steelhead Trout MPG / population	Funding project	Years of operation	Adult escapement infrastructure
	,		River Basin			
1	Rapid River (RPDTRP)	South Fork Salmon River / Little Salmon River	Salmon River / Little Salmon River	ISSMES	2007-2022	Permanent weir
2	Lower South Fork Salmon River (SFSRKT)	South Fork Salmon River / South Fork Salmon River	Salmon River / South Fork Salmon River	ISSMES	2015-2022	PIT array
3	Big Creek (BIG2CT)	Middle Fork Salmon River / Big Creek	Salmon River / Lower Middle Fork Salmon River	ISMES	2007-2022	PIT array
4	Lower Marsh Creek (MARTR2)	Middle Fork Salmon River / Marsh Creek	Salmon River / Upper Middle Fork Salmon River	ISSMESS	2009-2022	None
5	North Fork Salmon River (NFSTRP)	Upper Salmon River / North Fork Salmon River	Salmon River / North Fork Salmon River	ISMES	2015-2022	PIT array
6	Lemhi River (LEMTRP)	Upper Salmon River / Lemhi River	Salmon River I Lemhi River	IMW	1992-2022	PIT array
7	Lower Lemhi River (LLRTP)	Upper Salmon River / Lemhi River	Salmon River / Lemhi River	ISSMES	2013-2022	PIT array
8	Hayden Creek (HYDTRP)	Upper Salmon River / Lemhi River	Salmon River I Lemhi River	IMW	2006-2022	PIT array
9	Upper Salmon River (SAWTRP)	Upper Salmon River / Upper Salmon River mainstem	Salmon River / Upper Salmon River mainstem	ISSMESS	1992-2022	Permanent wei
10	Pahsimeroi River (PAHTRP)	Upper Salmon River / Pahsimeroi River	Salmon River / Pahsimeroi River	ISSMESS	1992-2022	Permanent wei
		Clearwater	River Basin			
11	Big Bear Creek (BBCTRP)	Dry Clearwater River / Upper South Fork Clearwater River	Clearwater River / Lower Clearwater Mainstem	IMW	2004-2022	PIT array
12	East Fork Potlatch River (EFPTRP)	Dry Clearwater River / Upper South Fork Clearwater River	Clearwater River / Lower Clearwater Mainstem	IMW	2007-2022	Seasonal weir
13	Crooked River (CROTRP)	Dry Clearwater River / Upper South Fork Clearwater River	Clearwater River / South Fork Clearwater River	ISMES	1990-2022	Seasonal weir
14	Lower Lochsa River (LOCTRP)	Wet Clearwater River / Lochsa River	Clearwater River / Lochsa River	ISMES	2015-2022	PIT array
15	Fish Creek (FISTRP)	Wet Clearwater River / Lochsa River	Clearwater River / Lochsa River	ISMES	1995-2022	Seasonal weir

	Trap C	Operation	
Location (PTAGIS site code)	Date range (mm/dd)	Total days operated / total days in date range	Operation summary and logistical issues
Salmon River basin			
Rapid River (RPDTRP)	4/24 – 11/3	151.5/193	The trap was installed on 4/13/22 but was not in operation until after the hatchery smolt release in late April. The cone was stopped by large debris on five occasions during high flows and was not operating for 38 days during spring runoff. The trap was removed on 11/3/22.
Lower South Fork Salmon River (SFSRKT)	3/11 – 11/9	115/234	The trap was installed on 3/11/22 but cone was not lowered until 3/13/22 due to ice upstream. Trap was pulled from 3/28/22-4/5/22 due to debris. The trap was shut down for smolt hatchery release 4/11/22-4/20/22. The trap was shut down for spring runoff 4/21/22-7/7/22. Additionally, because personnel were needed for the Chinook fishery, the trap was shut down for 9 days. The trap was nonoperational 7/29/22-8/5/22 and 8/13/22-8/15/22 due to high water temperatures. The cone was pulled on the trap on 11/3/22 due to unsafe weather conditions and officially removed on 11/9/22.
Big Creek (BIG2CT)	3/18-11/7	150.5/235	The trap nonoperational on 3/28, 3/30, and 3/31 due to high water conditions. The trap was shut down for spring runoff 4/25/22-7/13/22. The trap was shut down for 2 days due to high level of debris. The trap was pulled on 11/7/22 for the winter season.
Lower Marsh Creek (MARTR2)	3/20 – 10/28	151.5/223	The trap was installed on 3/19. Freezing conditions made the trap inoperable on four occasions in early spring as well as three occasions in late fall. High flows during spring runoff prevented operation for 64 days. In August, the cone was pulled for 3 days because of personnel scheduling. The trap was removed 10/29/22
North Fork Salmon River (NFSTRP)	03/23-11/14	199/238	The trap was installed on 3/23. The trap was in the water for 238 days. During this time, it was not operational for 25 days in the spring due to high water. Additionally, the trap did not run for 10 days in July due to the Moose Fire and 3 days in November due to ice. The trap was removed on 11/14.

Appendix B. Rotary screw trap operations in the Salmon River and Clearwater River basins, Idaho for 2022, with a brief summary of operations and logistical issues that possibly affected estimation of juvenile Chinook Salmon and steelhead emigrants.

Appendix B. Continued

Trap Operation

Trap Operation			
Location (PTAGIS site code) Lemhi River Weir (LEMTRP)	Date range (mm/dd) 03/22 – 11/19	Total days operated / total days in date range 224.5/243	Operation summary and logistical issues The Upper Lemhi trap was inoperable for 13 day and partially operated for 11 days. The trap did not operate due to high flows requiring maintenance. Partial operations were a result of debris.
Hayden Creek (HYDTRP)	03/22 – 11/3	36/227	The Hayden Trap was inoperable for 185 days and partially operated for 12 days. Partial operations were a result of both debris and high flows. Inoperable periods were the result of extremely low flows in Hayden Creek, leaving the trap to sit on rocks from July to November.
Lower Lemhi River (LLRTP)	03/25 – 11/15	183/236	The Lower Lemhi River trap was inoperable for 39 days and partially operated for 28 days. A majority of those days were during high flows, beaching our trap and resulting in trap maintenance. Low flows occurred in the summer and as a result, the cone was not able to spin for a few days.
Upper Salmon River (SAWTRP)	3/17 – 10/29	199.5/227	The trap was installed on 3/16/22. The cone was pulled for 4 days in April due to the hatchery release of integrated Chinook smolts. The trap fished intermittently for 22 days during spring runoff. In August, the trap was not operated for 2 days due to personnel scheduling. In September, a mink was observed on or near the trap. There was a 2-week period where obvious signs of predation on Chinook parr were observed in the trap box. After several attempts, the mink was trapped and relocated. The trap was removed on 10/29.
Pahsimeroi River (PAHTRP)	03/15-11/29	231/259	The trap was installed on 3/15. The trap was in the water for 259 days. Of this time, the trap was not operated for 23 days in April due to hatchery releases. The trap was found inoperable due to tire damage on 8/26. The trap was also found inoperable for 3 days in October due to a log and had to be replaced with a backup trap. Additionally, the cone was pulled after trap was checked on 11/22 to allow staff to take Thanksgiving Day off, so the trap was not operable 11/23. The trap was removed 11/29.

Appendix B. Continued

Trap Operation

		Tetal days	
Location (PTAGIS site code)	Date range (mm/dd)	Total days operated / total days in date range	Operation summary and logistical issues
Big Bear Creek (BBCTRP)	3/14-6/9	79/88	The BBCTRP was installed on 3/14/2022 and operated for 79 days. The trap was inoperable for 6 days and partially operated for 3 days in the spring due to low water conditions and available personnel. Trapping operations ceased on 6/9/2022 and no trapping was conducted during the summer and fall.
East Fork Potlatch River (EFPTRP)	3/14-6/5	80/84	The EFPRTRP was installed on 3/14/2022 and operated for 80 days. The trap was inoperable for 1 day and was partially operable for 3 days in the spring due to low water conditions and mechanical failure. Trapping ceased on 6/5/2022 and no trapping was conducted during the summer and fall.
Crooked River (CROTRP)	3/17-11/8	222/237	The CROTRP was installed on 3/17/2022 and operated for 222 days. The trap was inoperable for 15 days and partially operated for 31 days due to high flows/debris loads in the spring and low water conditions in the summer. Trapping ceased on 11/8/2022.
Fish Creek (FISTRP)	03/23-11/04	224/227	The FISTRP was installed on 3/23/2022 and operated for 224 days. The trap did not operate from 5/6/2022 to 5/9/2022 due to high flows/debris loads. Trapping ceased on 11/4/2022.
Lower Lochsa (LOCTRP)	03/15-11/05	188/236	The LOCTRP was installed on 3/15/2023 and operated for 188 days. The trap did not operate for 48 and operated partially for 11 days due to a combination of hatchery releases and high flows/debris loads in the spring, and high temperatures and low flows in the summer.

Population, location and PTAGIS site code	Season	Catch
Little Salmon River	Spring	o
Rapid River RPDTRP	Spring Sum/Fall	8 5
		Ŭ
South Fork Salmon River		
Lower South Fork Salmon River	Spring	259
SFSRKT	Sum/Fall	1,717
Lower Middle Fork Salmon River		
Big Creek		49
BIG2CT	Sum/Fall	83
Upper Middle Fork Salmon River		
Lower Marsh Creek	Spring	42
MARTR2	Sum/Fall	52
North Fork Salmon River		
North Fork Salmon River	Spring	120
Lemhi River	Sum/Fall	61
Lemin River Lemhi River	Spring	27
LEMTRP	Sum/Fall	9
Hayden Creek	Spring	90
HYDTRP	Sum/Fall	3
Lower Lemhi River	Spring	4
LLRTP	Sum/Fall	1
Upper Salmon River mainstem		
Upper Salmon River mainstern Upper Salmon River	Spring	158
SAWTRP	Sum/Fall	58
Pahsimeroi River		
Pahsimeroi River	Spring	4
PAHTRP	Sum/Fall	67
South Fork Clearwater River		
Crooked River	Spring	24
CROTRP	Sum/Fall	5
Lower Clearwater Mainstem		
East Fork Potlatch River	Spring	0
EFPTRP	Sum/Fall	NA
Big Bear Creek	Spring	2
BBCTRP	Sum/Fall	NA
Lochsa River		
Fish Creek	Spring	1
FISTRP	Sum/Fall	17
	Spring	11
Lower Lochsa River		

Appendix C. Seasonal catch of juvenile steelhead <80 mm FL from rotary screw traps operated in streams in Idaho in 2022.

Location	Brood year	Abundance at RST	Emigrants per redd/female	Abundance at LGR	Smolts at LGR per redd/female
	yeai	αι κοι	Salmon River Basin		reuu/remdle
South Fork Salmon	2014	102,681	210	27,314	56
South Fork Samon	2014	90,453	245	24,109	65
	2016	178,845	391	48,198	105
	2010	89,419	497	34,393	191
	2017	128,901	448	51,578	179
	2018	146,374	774	57,073	302
	2019	70,364	977	27,007	375
Big Creek	2006	63,442	1,475	7,573	176
	2007	55,885	931	24,469	408
	2008	131,740	1,387	46,867	493
	2009	183,268	1,167	58,509	373
	2010	247,912	1,271	60,485	310
	2010	211,204	943	45,161	202
	2011	129,134	615	28,287	135
	2012	127,661	1,130	33,051	292
	2013	323,649	1,904	74,589	435
	2014	205,194	1,274	59,057	367
	2015	215,345	1,455	51,981	351
	2010	56,476	2,017	24,462	874
	2017	42,461	885	18,346	382
	2018	67,327	3,544	34,817	1,832
	2019	55,545	1,736	26,718	835
Marsh Creek	2010	366,082	1,126	59,733	184
	2011	499,303	1,600	82,888	266
	2012	323,548	1,634	51,029	258
	2013	224,927	1,315	34,638	203
	2014	587,266	1,439	88,978	218
	2015	315,545	1,160	44,014	162
	2016	151,505	670	27,625	121
	2017	60,170	1,114	15,446	281
	2018	128,716	1,030	40,874	327
	2019	46.337	1,103	16,141	384
	2020	156,847	747	42,266	239
North Fork Salmon					
River	2014	16,199	228	6,002	85
	2015	17,812	262	5,565	82
	2016	27,377	1,141	7,941	331
	2017	2,086	1,043	1,202	601
	2018	15,746	787	5,391	270
	2019	8,362	597	3,026	216
	2020	26,365	1,388	10,751	576
Upper Lemhi	1991	17,479		5,269	96
River ^(a)			318		
	1992	11,132	742	3,073	205
	1993	10,428	282	3,983	108

Appendix D. Chinook Salmon abundance and productivity estimates by location and cohort.

Appendix D. Continued.

	Brood	Abundance	Emigrants per	Abundance	Smolts at LGR per
Location	year	at RST	redd/female	at LGR	redd/female
Lemhi River cont.	1994	1,789	89	814	41
	1995	1,706	190	802	89
	1996	6,790	234	4,071	140
	1997	46,950	939	20,970	419
	1998	12,755	311	5,673	138
	1999	13,654	284	4,573	95
	2000	14,743	159	5,384	58
	2001	46,696	138	13,082	39
	2002	19,424	159	6,667	55
	2003	8,570	121	2,566	36
	2004	10,216	341	3,859	129
	2005	7,743	155	2,730	55
	2006	4,843	127	1,706	45
	2007	4,376	151	1,842	64
	2008	7,035	213	2,224	67
	2009	47,560	523	19,238	211
	2010	23,018	256	10,231	114
	2011	33,951	281	12,047	100
	2012	11,721	143	5,873	72
	2013	20,877	215	9,644	99
	2014	80,386	374	24,842	116
	2015	55,177	361	19,994	131
	2016	34,065	313	6,387	59
	2010	16,381	381	5,758	134
	2017	35,462	394	13,808	153
	2018	20,132	395	8,049	158
	2019	17,672	201	6,927	79
	_0_0	,		0,0_1	
Hayden Creek	2005	3,369	241	1,037	74
	2006	9,110	701	2,650	204
	2007	55,223	1,781	7,026	227
	2008	11,777	1,309	4,617	513
	2009	18,430	1,084	2,847	167
	2010	32,961	891	5,733	155
	2011	20,013	294	5,490	81
	2012	28,039	1,078	3,703	142
	2013	7,860	231	2,172	64
	2014	77,221	1,058	3,895	53
	2015	63,389	409	12,452	80
	2016	43,792	796	6,068	110
	2017	2,315	193	661	55
	2018	8,094	99	1,661	45
	2019	9,802	350	4,057	145
	2020	22,215	673	425	13
Pahsimeroi River ^(a)	1992 ^(b)	3,227	179	1,053	59
	1992(*)	27,566	452	8,546	140
	1994	8,936	559	4,219	264
	1995	4,270	356	2,641	220
	1996	3,180	227	1,552	111

Appendix D. Continued.

	Brood	Abundance	Emigrants per	Abundance	Smolts at LGR per
Location	year	at RST	redd/female	at LGR	redd/female
Pahsimeroi River	1997				
cont.		17,793	574	10,131	327
	1998	26,240	673	12,867	330
	1999	19,954	289	7,595	110
	2000	17,288	360	4,715	98
	2001	62,567	372	24,148	144
	2002	42,508	244	14,182	82
	2003	72,724	166	19,754	45
	2004	36,989	147	10,495	42
	2005	79,159	222	23,439	66
	2006	13,255	141	3,063	33
	2007	14,133	196	4,600	64
	2008	22,341	243	8,607	94
	2009	50,896	320	18,696	118
	2010	44,247	301	17,491	119
	2011	51,713	247	16,706	80
	2012	62,148	679	15,368	173
	2012	16,525	223	3,879	52
	2013	70,596	200	22,856	70
			200		104
	2015	44,166		19,323	
	2016	79,501	365	27,511	126
	2017	16,656	126	7,166	54
	2018	19,109	120	6,346	40
	2019	11,343	222	5,840	115
	2020	26,836	440	8,332	137
Upper Salmon					
River ^(a)	1992 ^(b)	3,744	44	1,185	14
	1993	22,705	101	8,470	38
	1994	17,644	504	7,394	211
	1995	NE	NE	NE	NE
	1996	3,804	211	1,976	11(
	1997	22,703	631	11,781	327
	1998	35,618	2,375	10,982	732
	1999	17,015	740	5,047	219
	2000	106,597	635	30,291	180
	2000	351,651	727	39,624	82
	2001	441,082	665	48,503	73
	2002	235,254	588	43,650	109
	2003	236,914	887	36,336	136
		295,396			
	2005		1,588	52,317	281
	2006	135,547	1,059	31,342	245
	2007	80,711	1,261	19,161	299
	2008	94,687	802	20,405	173
	2009	150,729	908	25,506	154
	2010	144,768	766	28,665	152
	2011	153,147	672	26,519	116
	2012	135,031	475	33,463	118
	2013	30,354	416	6,361	87
	2014	57,039	213	9,546	36

Appendix D. Continued.

	Brood	Abundance	Emigrants per	Abundance	Smolts at LGR per
Location	year	at RST	redd/female	at LGR	redd/female
Upper Salmon					
River cont.	2015	80,286	664	10,441	86
	2016	99,055	461	16,582	77
	2017	52,301	297	13,809	78
	2018	22,829	387	5,028	85
	2019	12,757	395	2,358	98
	2020	16,918	546	3,300	106
	1992	9,922	220	3,382	75
Crooked River ^(a)	1993	33,448	697	8,648	180
	1994	836	209	262	66
	1995	NE	NE	NE	NE
	1996	6,422	1,284	3,730	746
	1997	12,132	221	4,203	76
	1998	10,887	1,089	2,141	214
	1999	611	611	271	271
	2000	6,470	70	2,503	27
	2001	5,819	67	1,228	14
	2002	6,640	226	1,481	82
	2003	19,955	499	4,886	122
	2004	10,149	597	3,419	201
	2005	2,008	502	703	176
	2006	698	698	218	218
	2007	455	114	255	64
	2008	4,388	169	1,631	63
	2009	3,608	241	2,021	135
	2010	1,944	194	810	81
	2011	2,318	166	816	58
	2012	7,868	NE	1,705	NE
	2013	622	207	NE	NE
	2014	1,857	98	421	22
	2015	11,911	851	2,793	200
	2016	1,704	170	263	26
	2017	305	305	184	184
	2018	2,221	NE	590	NE
	2019	NE	NE	NE	NE
	2020	4,331	NE	2,564	NE

From 1991 to 1996 smolt traps were not operated during summer periods (June, July, August). Estimates for these years are on the conservative side. Smolts only. а

b

Population and RST	Cohort	N	umber of	emigrant	s by age	(years)		Sum	Female	Productivity
location	Age-0	Age-1	Age-2	Age-3	Age-4	Age-5	parents	parents		
				Salmo	n River M	IPG				
Little	2007	112	716	1,864	1,628	260	0	4,580	21	218
Salmon	2008	72	478	885	958	216	65	2,675	46	58
River	2009	17	286	1,327	768	725	19	3,142	63	50
	2010	0	448	1,783	1,699	261	0	4,189	116	36
^b Rapid River	2011	0	774	1,378	955	94	0	3,200	101	32
RPDTRP	2012	23	405	1,561	1,084	60	0	3,134	57	55
	2013	0	579	1,530	478	28	0	2,615	15	174
	2014	9	1,175	1,155	565	132	0	3,036	16	190
	2015	71	1,039	677	1,338	127	0	3,252	54	60
	2016	8	416	800	453	63	6	1,746	13	134
	2017	0	162	265	396	180	19	1,022	8	124
	2018	0	100	362	756	324		1,542	5	308
	2019	0	111	646	1,290				8	
	2020	0	341	1,188					8	
	2021	0	383						9	
	2022	0							8	
South Fork	2012				0	0	0	0	369	
Salmon River	2013			277	437	0	0	759	301	
	2014		5,188	1,179	1,221	0	0	7,796	275	
^a Lower South	2015	5,049	28,262	10,954	429	170	0	44,864	550	82
Fork Salmon	2016	3,919	22,455	6,785	511	175	0	33,845	239	142
River	2017	711	15,202	6,133	2,260	148	0	24,454	163	150
SFSRKT	2018	859	3,918	4,124	488	0		9,389	55	170
	2019	454	11,761	3,341	357				45	
	2020	502	7,457	3,602					39	
	2021	464	11,272						147	
	2022	0							132	
Lower	2010	0	7,604	18,632	6,950	603	0	33,791	688	49
Middle Fork	2011	0	3,316	10,142	5,980	558	0	19,994	443	45
Salmon River	2012	84	14,552	19,328	6,754	244	0	40,962	263	156
	2013	85	13,263	20,761	1,097	211	0	35,418	302	117
^a Big Creek	2014	0	13,432	9,812	1,603	0	0	24,847	180	138
BIGC2T	2015	0	12,824	6,777	666	98	0	20,365	532	38
	2016	443	4,772	14,701	2,557	0	0	22,473	216	104

Appendix E. Estimated productivity for juvenile steelhead emigrants by cohort, expressed as emigrants at rotary screw trap (RST) per female spawner, for populations with estimates of female spawner abundance in the Salmon River and Clearwater River basins, Idaho. Accounting is incomplete for cohorts with dashes in any age column.

Appendix E. C Population		Nu	mber of	emigrants	s by age	(years)			Female	
and RST location	Cohort –	Age-0	Age-1	Age-2		Age-4	Age-5	Sum	parents	Productivity
	2017	0	4,098	8,179	2,450	120	0	14,847	42	354
	2018	154	7,841	24,258	1,698	0		33,951	85	399
Big Creek	2019	195	4,737	5,117	775				56	
Cont.	2020	0	2,754	14,837					62	
	2021	260	10,961						85	
	2022	0							135	
Upper	2001	264	9,916	4,316	581	57	0	15,211	24	634
Salmon River	2002	32	1,780	2,798	563	0	0	5,173	39	133
Mainstem	2003	17	3,158	1,548	205	13	NE	4,941	16	309
	2004	22	989	955	1,842	NE	0	3,808	7	544
	2005	62	1,000	4,734	NE	0	0	5,796	15	386
^b Upper	2006	0	4,172	NE	48	0	0	4,220	9	469
Salmon	2007	128	NE	2,553	344	0	0	3,025	17	178
River	2008	NE	1,923	2,817	80	8	0	4,828	7	690
SAWTRP	2009	12	5,054	4,133	304	14	0	9,517	14	680
	2010	13	7,607	3,907	175	0	0	11,703	56	209
	2011	15	4,978	4,092	27	0	0	9,112	64	142
	2012	39	6,278	3,901	333	0	0	10,551	42	251
	2013	0	4,107	3,701	328	0	0	8,137	18	452
	2014	0	8,069	3,997	72	0	0	12,138	17	714
	2015	526	19,544	2,187	377	0	0	22,634	39	580
	2016	1,374	6,540	2,776	807	18	0	11,515	44	262
	2017	436	856	1,631	124	18	0	3,065	18	170
	2018	51	2,175	1,485	183	0		3,894	9	433
	2019	46	1,523	1,516	552				8	
	2020	192	5,120	3,794					21	
	2021	1,803	10,154						59	
	2022	267							18	
^b Pahsimeroi	2001		23,396	5,188	148	0	0	28,732	77	
River	2002	12,194	17,705	2,429	281	0	0	32,609	225	145
PAHTRP	2003	8,447	8,993	3,448	124	0	0	21,012	124	169
	2004	7,786	10,702	1,584	0	0	0	20,072	33	608
	2005	3,282	5,897	189	151	0	0	9,518	27	353
	2006	3,658	8,044	1,445	77	0	0	13,223	23	575
	2007	5,766	11,467	903	550	0	0	18,686	7	2,669
	2008	5,040	8,139	5,371	453	0	0	19,004	23	826
	2009	2,227	9,879	1,305	0	0	0	13,412	24	559
	2010	1,580	3,410	2,050	666	0	0	7,707	68	113
	2011	202	4,897	6,418	64	0	0	11,581	153	76

Population and RST	Cohort	<u> </u>	umber of	emigrant	s by age	(years)		Sum	Female	Productivity
location	Conort	Age-0	Age-1	Age-2	Age-3	Age-4	Age-5	Sum	parents	Productivity
	2012	1,224	8,369	2,104	22	0	0	11,719	168	70
	2013	12,085	11,431	1,399	159	0	60	25,135	107	235
	2014	2,533	4,941	1,566	0	0	0	9,040	121	75
	2015	5,524	10,340	680	132	0	0	16,676	76	219
	2016	3,330	6,140	2,114	127	0	8	11,719	57	206
PAHTRP	2017	1,436	6,339	679	73	0	0	8,527	18	474
	2018	1,142	2,614	934	25	22		4,737	20	237
	2019	2,281	3,725	686	310				21	
	2020	1,798	6,512	2,038					26	
	2021	5,543	8,320						14	
	2022	3,874							9	
aLower	2010	0	6,023	NE	218	0	0	6,241	278	22
Lemhi River	2011	0	NE	682	314	0	0	996	228	4
LLRTP	2012	NE	682	2,666	1,176	7	1	4,531	249	18
	2013	0	610	4,819	93	15	22	5,558	226	25
	2014	0	11,181	4,904	209	33	0	16,327	181	90
	2015	1,884	7,600	1,798	929	141	0	12,352	249	50
	2016	260	4,219	3,705	2,407	73		10,664	190	56
	2017	246	3,799	4,925	202	175	0	9,347	123	76
	2018	99	5,898	1,785	2,261	194		10,237	74	138
	2019	309	4,960	6,719	2,213				48	
	2020	0	4,591	6,106					86	
	2021	0	2,398						77	
	2022	0							38	
^a Upper	2010	388	8,600	1,732	125	47	0	10,892	9	1,155
Lemhi River	2011	89	9,202	1,270	198	21	0	10,780	56	192
LEMTRP	2012	782	8,689	2,200	213	41	0	11,925	26	453
	2013	683	7,199	2,401	807	0	0	11,090	52	215
	2014	522	17,677	5,407	51	0	0	23,657	12	1,916
	2015	1,284	13,390	1,138	204	0	0	16,015	26	607
	2016	0	11,119	882	142	12	0	12,155	31	388
	2017	725	6,852	1,204	76	0	0	8,857	16	554
	2018	611	5,091	717	185	0		6,604	12	573
	2019	388	6,675	1,415	92				6	
	2020	0	21,045	991					6	
	2021	304	14,299						7	
	2022	0							0	

Appendix E. Continued

Population	Cabart		Numbe	er of emig	rants by	age (yea	ars)		Female	
and RST location	Cohort -	Age-0	Age-1	Age-2	_	Age-4	Age-5	Sum	parents	Productivity
					er River I		_			
Lower	2006	1	2,450	3,286	903	0	0	6,640	20	332
Clearwater	2007	0	2,109	4,383	205	0	0	6,697	69	97
River	2008	23	1,266	6,621	175	0	0	8,085	44	182
Mainstem	2009	3	3,264	3,452	279	0	0	6,998	61	114
^ь Big Bear	2010	5	209	6,548	1,049	0	0	7,811	150	52
Creek	2011	0	4,224	11,109	338	0	0	15,671	66	238
	2012	4	10,526	4,530	932	0	0	15,992	217	74
BBCTRP	2013	1	608	4,880	213	0	0	5,702	73	78
Cont.	2014	0	2,742	3,388	73	0	0	6,203	163	38
	2015	0	4,224	3,242	139	0	0	7,605	61	124
	2016	61	7,613	6,788	533	42	0	15,037	64	237
	2017	0	3,256	4,890	625	23	0	8,794	16	538
	2018 ^(c)	0	726	3,377	45	0		4,148	15	271
	2019 ^(c)	0	4,544	2,325	19				5	
	2020 ^(c)	0	1,512	3,093					8	
	2021 ^(c)	0	57						8	
	2022 ^(c)	0							135	
^b East Fork	2008	140	9,525	7,230	0	0	0	16,895	46	368
Potlatch	2009	0	22,018	4,366	666	0	0	27,050	46	588
River	2010	550	9,959	2,785	694	0	0	13,987	55	257
EFPTRP	2011 ^(a)	0	9,138	6,242	393	0	0	15,773	21	765
	2012	258	33,289	4,515	1,020	0	0	39,082	53	732
	2013	0	5,628	5,006	379	0	0	11,013	48	231
	2014	0	9,456	3,296	0	0	0	12,752	45	282
	2015	0	5,538	2,937	107	0	0	8,583	59	145
	2016	206	12,273	3,547	326	0	0	16,353	54	301
	2017	0	6,127	1,468	62	17	0	7,674	8	959
	2018	0	1,305	570	428	0		2,303	10	233
	2019	0	1,552	1,626	164				2	
	2020	0	684	866					10	
	2021	0	35						13	
	2022	0							2	
South Fork	2007	0	131	827	376	144	0	1,479	8	193
Clearwater	2008	0	54	115	291	30	0	490	1	454
River	2009	0	0	93	125	9	0	226	0	
^b Crooked	2010	0	1,024	1,751	1,026	9	0	3,810	4	906
River	2011	0	82	1,283	387	0	0	1,753	0	
CROTRP	2012	5	993	832	0	0	0	1,829	3	610

Appendix E. Continued	

Population	Oshari		Nu	mber of e	migrants	by age	(years)	0	Female	Due due theite
and RST location	Cohort –	Age-0	Age-1	Age-2	Age-3	Age-4	Age-5	Sum	parents	Productivity
	2013	0	0	0	7	0	0	7	1	6
CROTRP	2014	0	0	87	26	0	0	112	0	
Cont.	2015	0	1,455	343	0	8	0	1,806	4	452
	2016	0	290	0	48	0	0	338	1	372
	2017	0	0	144	30	1	0	175	0	
	2018	0	82	427	10	3		522	0	
	2019	0	213	20	26				0	
	2020 ^(d)	0	1	197					0	
	2021	0	592						0	
	2022	0							2	
Lochsa	1996	0	5,286	6,869	843	20	0	13,019	24	534
River	1997	57	4,974	8,928	624	88	0	14,672	18	819
	1998	0	10,713	10,962	2,932	0	0	24,607	52	474
^b Fish Creek	1999	99	8,582	15,847	600	0	0	25,128	60	418
FISTRP	2000	137	8,466	4,484	1,189	0	0	14,275	20	711
	2001	239	7,661	15,114	1,050	0	0	24,064	56	428
	2002	0	13,501	15,288	4,265	0	0	33,054	153	217
	2003	340	14,030	23,945	2,449	116	0	40,879	242	169
	2004	241	23,094	14,091	2,080	70	0	39,576	125	317
	2005	492	9,022	12,148	1,295	0	0	22,957	82	280
	2006	65	9,236	9,227	853	156	0	19,539	69	283
	2007	57	4,553	8,107	1,418	0	0	14,135	49	287
	2008	0	4,883	11,808	288	0	0	16,979	55	308
	2009	47	16,006	29,647	1,739	104	0	47,544	141	336
	2010	0	16,982	16,280	2,426	0	0	35,688	132	269
	2011	0	7,723	23,653	1,147	43	0	32,565	357	91
	2012	70	7,624	10,895	962	435	0	19,986	124	162
	2013	0	3,441	9,765	597	0	0	13,803	65	211
	2014	0	8,735	5,661	487	0	0	14,884	38	387
	2015	93	70,461	25,307	260	33	0	96,155	349	276
	2016	0	12,654	9,259	802	39	0	22,753	142	161
	2017	122	2,380	5,060	401	0	0	7,962	58	138
	2018	37	868	2,567	204	0		3,677	8	460
	2019	100	2,414	2,852	103				40	
	2020	0	1,846	4,172					10	
	2021	25	6,517						74	
	2022	34								

Appendix E. Continued

Adult estimate from PIT array using DABOM model. Estimate from weir escapement. а

b

с Low abundance so DABOM was not used. Minimum expanded estimate based on detections at Lower Granite.

d Weir was not in for most of the season.

Major Population Group	Site location and PTAGIS code of RST	Brood year	Emigrant abundance at RST	Emigrants per female spawner	Survival rate to LGR (SE)	Smolt abundance at LGR	Smolts per female spawner
Clearwater River							
	Big Bear Creek	2007	7,033	102	0.450	3,164	46
	BBCTRP	2008	7,809	176	0.601	4,697	106
		2009	6,820	111	0.589	4,018	66
		2010	7,380	49	0.405	2,991	20
		2011	13,454	204	0.550	7,398	112
		2012	21,356	99	0.415	8,863	41
		2013	5,879	80	0.385	2,263	31
		2014	6,147	38	0.312	1,917	12
		2015	5,513	90	0.413	2,277	37
		2016	16,249	256	0.489	7,950	125
		2017	7,962	487	0.466	3,711	227
		2018	3,994	315	0.478	1,909	151
		2019	7,022	1,221	0.525	3,686	641
		2020	4,086	564	0.482	1,968	271
	East Fork	0007	7 745		0.007	0.070	
	Potlatch River	2007	7,715	NA	0.307	2,370	N/
	EFPTRP	2008	17,086	372	0.211	3,605	7
		2009	37,506	18,753	0.206	7,744	3,872
		2010	16,510	365	0.120	1,989	4
		2011	16,872	367	0.295	4,971	10
		2012	38,611	723	0.089	3,439	64
		2013	10,699	1,081	0.319	3,413	34
		2014	12,468	210	0.071	887	1:
		2015	7,325	154	0.455	3,336	7
		2016	16,810 7,792	309	0.141	2,378	4. 5
		2017 2018		378 454	0.135 0.274	1,053 997	5 12
		2018	3,635	454 37	0.274	997 805	12
		2019	2,042 1,587	167	0.394 NA	NA	N/
	Fish Creek	2005	21,960	268	0.398	8,733	10
	FISTRP	2006	19,220	279	0.481	9,240	134
		2007	16,334	332	0.576	9,416	19 [.]
		2008	15,545	282	0.455	7,077	12
		2009	51,132	362	0.400	21,184	15
		2000	26,803	202	0.362	9,703	7
		2010	27,387	77	0.381	10,422	2
		2011	18,624	151	0.552	10,422	8
		2012	15,631	239	0.488	7,625	11
		2013	13,648	355	0.404	5,510	14:
		2014	90,224	259	0.225	20,275	5
		2015	90,224 23,268	259 164	0.225	7,739	5

Appendix F. Steelhead abundance and productivity estimates by cohort at rotary screw traps and LGR for the Salmon River and Clearwater River drainages, Idaho.

Major Population Group	Site location and PTAGIS code of RST	Brood year	Emigrant abundance at RST	Emigrants per female spawner	Survival rate to LGR (SE)	Smolt abundance at LGR	Smolts per female spawner
		2017	7,468	132	0.567	4,235	74
		2018	2,933	367	0.468	1,372	172
		2019	5,254	132	0.469	2,464	62
Salmon River							
	Hayden Creek	2009	6,252	NA	0.491	3,067	NA
	HYDTRP	2010	4,259	122	0.253	1,078	31
		2011	7,986	587	0.168	1,341	99
		2012	20,798	466	0.433	9,001	202
		2013	11,926	268	0.144	1,713	39
		2014	8,746	297	0.147	1,285	44
		2015	7,390	246	0.116	861	29
		2016	5,975	137	0.324	1,935	44
		2017	6,896	222	0.332	2,292	74
		2018	5,454	485	0.352	1,922	171
		2019	2,084	379	0.380	792	144

Appendix G. Plan for operation of rotary screw traps by Idaho Department of Fish and Game (IDFG) in 2022.

2022 Plan for IDFG Screw Traps and Biosampling Adult Steelhead and Chinook Salmon Released at Weirs

Brett Bowersox, Luciano Chiaramonte, Tim Copeland, Jeff DiLuccia, Jordan Messner, and Greg Schoby IDFG

The following plan was initially drafted in 2014 to facilitate the ISS project closeout, transfer equipment to other projects, prepare 2015 budgets for Bonneville Power Administration, and complete NOAA 4(d) Research Permit applications. Here it is updated for 2022. The plan describes IDFG screw trapping and biosampling of adult steelhead and Chinook Salmon released at hatchery and research weirs. Operation of screw traps and weirs forms the basis for "Fish-in and Fish-out" population monitoring designed to track population level abundance and productivity and fish response to habitat improvement projects. Starting in 2018, all hatchery weirs have been permitted under Hatchery and Genetic Management Plans (HGMPs). Sampling at IDFG research weirs and screw traps (outside the Smolt Monitoring Project (SMP) /Comparative Survival Study (CSS) traps and those covered in the HGMPs) in tributaries of the Clearwater River and Salmon River basins will be conducted under separate 4(d) permits. The Sawtooth screw trap (SAWTRP) and Lemhi River weir will operate under separate Section 10 permits. General contracting and permitting deadlines are as follows: BPA contracting due 9/30/20 and NOAA Section 4(d) permitting applications due 10/6/20.

The contracts and operations plan for IDFG screw traps is part of the closeout of ISS and transfer of most traps to other BPA projects that started in 2015 (Table 1; Figures 1 and 2 in report). Additional screw traps are operated by the Potlatch and Lemhi IMW projects. IDFG trap operators include Brian Knoth (Potlatch IMW), Stacey Meyer (Lemhi IMW), and Scott Putnam (Idaho SMP/CSS) as well as Idaho Salmon and Steelhead Monitoring and Evaluation Studies (ISSMES) staff from Nampa Research and Regions 2, 3M, and 7 as indicated. Outside the SMP/CSS traps, sampling at screw traps will include collecting scales for ageing wild steelhead; tissue samples for genetics will not be collected from any species. Outside the SMP/CSS traps, trap operators will be responsible to provide estimates of abundance and survival to Lower Granite Dam for each species at each screw trap.

The IDFG weir biosampling plan refers to sampling wild or integrated hatchery steelhead and Chinook Salmon adults trapped and released at hatchery or research weirs (Table 2; Figures 1 and 2). Sampling adults released at weirs will include collecting scales from wild steelhead for aging but not from Chinook Salmon. Tissue samples for genetics will be collected from all anadromous fish released at the weir. A comprehensive sampling checklist is provided for all Chinook Salmon trapped at IDFG hatchery weirs (Table 3).

	Trap and		NOAA		Calendar year	
Мар	PTAGIS site		juvenile	Migratory year	2022 contract	
#	code	Subbasin	permit	2022 status	and operator	Screw trap comments
				n & Steelhead Pro		
	Sawtooth	Upper	10-2022-		ISSMES-Jake	
9	(SAWTRP)	Salmon	#1124-6R	OPERATE	Ruthven	
-	Pahsimeroi					
	River	Upper	4d-2022-		ISSMES-Megan	
10	(PAHTRP)	Salmon	#26047	OPERATE	Heller	
	North Fork					
	Salmon River	Upper	4d-2022-		ISSMES- Megan	
5	(NFSTRP)	Salmon	#26047	OPERATE	Heller	
	Marsh Creek					
	Lower		4d-2022-			
4	(MARTR2)	MF Salmon	#26047	OPERATE	ISSMES-Eli Felts	
3	Big Creek (BIG2CT)	MF Salmon	4d-2022- #26047	OPERATE	ISSMES-Amber Young	
3	Krassel	IVIT Saimon	#20047 4d-2022-	UPERATE	ISSMES-Amber	
2	(SFSRKT)	SF Salmon	40-2022- #26047	OPERATE	Young	
2	Rapid River	Lower	4d-2022-	OLINAL	ISSMES-Alexa	
1	(RPDTRP)	Salmon	#26047	OPERATE	Ballinger	
	Fish Creek	Carrier	4d-2022-	OFERVITE	ISSMES-Nolan	
15	(FISTRP)	Lochsa	#26112	OPERATE	Smith	
-	Lochsa River		4d-2022-	-		
	Lower		#26112		ISSMES-Nolan	
14	(LOCTRP)	Lochsa		OPERATE	Smith	
	Crooked River	SF	4d-2022-		ISSMES-Brian	Steelhead monitoring, CSS
13	(CROTRP)	Clearwater	#26112	OPERATE	Knoth	PIT-tagging, habitat evaluation
			IDFG F	Potlatch Project (II	ИW)	
	Big Bear Creek	Lower	4d-2022-		Potlatch IMW-	
11	(BBCTRP)	Clearwater	#26112	OPERATE	Brian Knoth	
	East Fork		4d-2022-			
	Potlatch River	Lower	#26112	0050475	Potlatch IMW-	
12	(EFPTRP)	Clearwater		OPERATE	Brian Knoth	
		r	IDFG I	Lemhi Projects (IN	(W)	1
	Lemhi River					
0	Upper	Upper	4d-2022-		Lemhi IMW-	
6	(LEMTRP)	Salmon	#26122 4d-2022-	OPERATE	Stacey Meyer Lemhi IMW-	
8	Hayden Creek (HYDTRP)	Upper Salmon	4d-2022- #26122	OPERATE	Stacey Meyer	
o	Lemhi River	Upper	4d-2022-	OFLICATE	Lemhi IMW-	
7.22	Lower (LLRTP)	Salmon	#26122	OPERATE	Stacey Meyer	
1,22	Lower (LEITT)			onitoring Project		
			03-23-			
	White Bird	Lower	63-23- FPC-47		Idaho SMP/CSS-	
17	(SALTRP) ^(a)	Salmon	11041	OPERATE	Scott Putnam	Permitted (LOD) through FPC
	(2	20	03-23-	0. 2.0(12		
	Lewiston		FPC-47		Idaho SMP/CSS-	
18	(SNKTRP) (a)	Lower Snake	-	OPERATE	Scott Putnam	Permitted (LOD) through FPC

Table 1. IDFG plan for rotary screw trap operations during 2022.

^(a) White Bird and Lewiston are scoop and dipper traps, respectively, and not rotary screw traps.

	Wild and Integrated Adult Sampling at Hatchery and Research Weirs										
			Steelhead		Spring-Summer Chinook Salmon						
	Collect	Collect	NOAA		Collect	Collect	NOAA				
IDFG adult weir (map	scale	genetic	adult	2022 Contract	scale	genetic	adult	2022 Contract			
#) ``	sample	sample	permit	& operator	sample	sample	permit	& operator			
		-		ISSMES-		-		INPMEP-			
Sawtooth (9)	Yes	Yes	HGMP	Sawtooth FH	No	Yes	HGMP	Sawtooth FH			
				Shoshone-							
EFSR (19)	Yes ^(a)	Yes	HGMP	Bannock Tribes	N/A ^(b)	N/A ^(b)	N/A ^(b)	N/A ^(b)			
				ISSMES-				INPMEP-			
Pahsimeroi (10)	Yes	Yes	HGMP	Pahsimeroi FH	No	Yes	HGMP	Pahsimeroi FH			
				Lemhi IMW-				Lemhi IMW-			
Lemhi River (22)	N/A ^(c)	N/A ^(c)	N/A ^(c)	Stacey Meyer	No ^(c)	Yes ^(c)	N/A	Stacey Meyer			
				Lemhi IMW-			4d-2022-	Lemhi IMW-			
Hayden Creek (8)	N/A ^(c)	N/A ^(c)	N/A ^(c)	Stacey Meyer	N/A ^(c)	N/A ^(c)	#26122	Stacey Meyer			
				Lemhi IMW-			4d-2022-	Lemhi IMW-			
Bear Valley Creek (34)	N/A ^(c)	N/A ^(c)	N/A ^(c)	Stacey Meyer	N/A ^(c)	N/A ^(c)	#26122	Stacey Meyer			
			4d-2022-	Region 7-							
Twelve Mile Creek (25)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	N/A			
			4d-2022-	Region 7-							
Poison Creek (26)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	N/A			
			4d-2022-	Region 7-							
Carmen Creek (27)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	N/A			
			4d-2022-	Region 7-							
Tower Creek (28)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	N/A			
Fourth of July Creek			4d-2022-	Region 7-							
(29)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	N/A			
			4d-2022-	Region 7-							
Iron Creek (30)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	N/A			
			4d-2022-	Region 7-							
Cow Creek (33)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	Not operated			
			4d-2022-	Region 7-							
Challis Creek (31)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	Not operated			
			4d-2022-	Region 7-							
Morgan Creek (32)	Yes	Yes	#26047	Megan Heller	N/A	N/A	N/A	Not operated			
				ISMES-Josh				ISSMES-McCall			
McCall SFSR (20)	Yes ^(d)	Yes ^(d)	HGMP	Poole	No	Yes	HGMP	FH			
) ((d)) (d)		ISSMES-				ISSMES-Rapid			
Rapid River (1)	Yes ^(d)	Yes ^(d)	HGMP	Vacant	No	Yes	HGMP	River FH			
Hells Canyon Oxbow		Ň		ISSMES-		Ň		ISSMES-Oxbow			
(24)	Yes	Yes	HGMP	Oxbow FH	No	Yes	HGMP	FH			
5	• • • • • (d)	• • • • (d)						ISSMES-			
Powell (21)	N/A ^(d)	N/A ^(d)	N/A	N/A	No	Yes	N/A ^(e)	Clearwater FH			
	N/s s	Mar	4d-2022-	ISSMES-Nolan	NI	N/s s	N1 (A (P)	ISSMES-Marika			
Fish Creek (15)	Yes	Yes	#26112	Smith	No	Yes	N/A ^(e)	Dobos			
Devil Divers (22)			N1/A	N1/A		X		ISSMES-			
Red River (23)	N/A ^(d)	N/A ^(d)	N/A	N/A	No	Yes	N/A ^(e)	Clearwater FH			
Orealized Diversi(40)	$\mathbf{V}_{\mathbf{a}} = (\mathbf{d})$	$\mathbf{V}_{\mathbf{a}} = (\mathbf{d})$	4d-2022-	ISSMES-Brian	N	Ver	N1/A(9)	ISSMES-			
Crooked River (13)	Yes ^(d)	Yes ^(d)	#26112	Knoth	No	Yes	N/A ^(e)	Clearwater FH			
EE Dotlotok Diver (40)	Var	Vee	4d-2022-	Potlatch IMW-	Ne	Ver	NL/A(e)	Potlatch IMW-			
EF Potlatch River (12)	Yes	Yes	#26112	Brian Knoth	No	Yes	N/A ^(e)	Brian Knoth			

Table 2. Plan for contracts and operations of IDFG adult weirs relative to sampling wild and integrated fish released at each weir in 2022. Scale and genetics sampling for steelhead and Chinook Salmon are indicated.

^(a) EFSR steelhead scales should be collected from all wild fish trapped; scales not needed from hatchery fish.

^(b) EFSR hatchery rack not generally operated for Chinook broodstock collection; 2014 last year of biosampling for Captive Chinook project.

^(c) Lemhi River weir has not been ran since 2017. The weir was not a full escapement weir, anticipated capture was roughly half of the total return; Hayden and Bear Valley Creek weirs are operated for bull trout in September, anticipate Chinook incidental catch. ^(d) Hatchery rack not generally operated for steelhead broodstock collection; opportunistic biosamples at McCall SFSR.

(e) Spring/summer Chinook are not listed in the Clearwater drainage and sampling them does not require a NOAA permit.

Table 3. Checklist for Chinook Salmon at IDFG hatchery weirs.

			CHINOOK	SALMON AT ID	FG HATCHERY V	VEIRS			
footi	o Do: (see notes below for why)	TRAPPED - Record length, sex, marks and tags from all fish trapped	POND MORTS, GIVEAWAYS, OUTPLANTS - Record data according to weir protocols	SPAWNED MORTS					
		RELEASED ABOVE WEIR		BROOD	BROOD	BROOD	BROOD		
		Ad Intact (UNM), with or without CWT		Ad Intact (UNM), without CWT	Ad Intact (UNM), with CWT	Ad Clip, with CWT	Ad Clip, without CWT		
(1)	Opercle punch (OP)	ALL	Recycled (different OP than released above weir)						
(2)	Collect tissue sample	ALL	UNM (and IBS at Sawtooth, Pahsimeroi, and SF Salmon/McCall)	ALL	ALL	ALL	ALL		
(3)	Collect dorsal fin ray sample			ALL					
(4)	Collect snout		20 JACKS (CWT lab request)						
(5)	Collect snout AND dorsal fin ray sample				30 KNOWN AGE - 10 FROM EACH AGE GROUP TO BE PAIRED WITH CWT SAMPLE (based on standard length cut- offs, hatchery defined). Can also be collected from pond morts or giveaways to achieve desired sample size.				
(6)	Collect scale sample				Camp	0.201			

- (1) Opercle punches are needed for any fish released above the weir to enable mark/recapture estimates of weir efficiency and total spawner abundance. Recycled fish are punched on the opposite opercle to distinguish them from newly arrived fish returning to the weir.
- (2) Fin clip tissue samples are used to establish parentage based tagging (PBT) genetic baselines for hatchery fish. They are also used to age and assign returning fish to their appropriate parents and to their hatchery stock of origin or release group. Tissue samples from wild fish are used to derive genetic diversity information.
- (3) Dorsal fin ray samples are used to assign age to returning fish. They should not be collected from live fish, only morts or carcasses. Both wild and hatchery Chinook can be aged using these samples. Fin rays are not commonly used to age steelhead or sockeye.
- (4) Snouts are collected from a sample of fish that have a coded wire tag (CWT). These tags are used to assign hatchery stock of origin, release group, and age. These can be collected from spawned broodstock, pond morts, or giveaways.
- (5) Snouts are collected from a sample of fish that have a coded wire tag (CWT). These tags are used to assign hatchery stock of origin, release group, and age. When paired with a fin ray sample, these tagged fish are used for fin ray age validation since their absolute age is known from the CWT. These can be collected from spawned broodstock, pond morts, or giveaways.

(6) Scale samples are used to assign age to returning fish. They should not be collected from Chinook at hatchery weirs or on the spawning grounds due to their degraded condition. Scale samples should be collected from wild steelhead returning to and passed above the weir. In general throughout Idaho, only wild and not hatchery steelhead can be accurately aged using scales.

Prepared by:

Approved by:

IDAHO DEPARTMENT OF FISH AND GAME

- Cuill

/John Cassinelli Anadromous Fisheries Manager

-

Amber N. Young

Fisheries Biologist

Bruce Barnett Fisheries Data Coordinator J. Lance Hebdon, Chief Bureau of Fisheries

Micah Davison Supervisory Fisheries Biologist

Marika E. Dobos Anadromous Staff Biologist

Megan Heller Fisheries Biologist

Brian A. Knoth Fisheries Biologist

Stacey F. Meyer Fisheries Biologist

Ronald V. Roberts Fisheries Technician II

Nolan Smith Fisheries Biologist